首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
通过冷喷涂、冷喷涂-阳极氧化对WE43镁合金进行复合表面处理,采用高锰酸钾点滴试验,动电位极化曲线,扫描电镜(SEM/EDS),X射线衍射(XRD)等测试手段,研究了涂层的腐蚀行为。结果表明,经冷喷涂处理制备的涂层表面致密,相较于镁合金基体自腐蚀电位提高了0.864 V,自腐蚀电流密度降低至2.1×10-5 A/cm2,点滴试验时间由5 s增加至59 s;冷喷涂-阳极氧化复合涂层相较于镁合金基体自腐蚀电位提高了1.097V,自腐蚀电流密度降低至3.16×10-7 A/cm2,自腐蚀电流密度相较于单一冷喷涂处理下降了两个数量级,点滴试验时间由5 s增加至478 s;采用冷喷涂处理和冷喷涂-阳极氧化复合处理均能提高WE43镁合金的耐蚀性能。  相似文献   

2.
为提高AZ31B镁合金表面的耐腐蚀性能,用火焰喷涂方法在镁合金表面制备Al-Mg_2Si复合涂层。采用XRD、SEM和EDS分析涂层的物相组成、微观组织及元素分布;通过电化学试验测试样品在3.5%NaCl溶液中的腐蚀电位、腐蚀电流密度;通过3.5%NaCl溶液浸泡试验测试样品的腐蚀速率;并测试涂层的显微硬度。结果表明:涂层中的主要物相有Mg_2Si、Al,组织比较致密,元素分布均匀。Tafel极化曲线测试表明,Al-Mg_2Si涂层样品与AZ31B镁合金样品相比腐蚀电位从-1.489 V正移到-1.366 V,腐蚀电流密度从2.817×10~(-3) A/cm~2降低到1.198×10~(-3) A/cm~2。浸泡试验结果表明,喷涂Al-Mg_2Si的镁合金的腐蚀速率明显低于没有喷涂的镁合金。显微硬度测试表明,涂层的显微硬度集中分布在259~308 HV0.05之间,镁合金为50~60 HV0.05。因此在AZ31B镁合金表面火焰喷涂Al-Mg_2Si涂层可以提高其耐腐蚀性能,表面硬度显著提高。  相似文献   

3.
利用微弧氧化和化学镀镍在AZ91D镁合金表面制备了复合涂层,采用动电位极化曲线测试和电化学阻抗测试等方法研究微弧氧化和化学镀镍复合涂层在3.5%NaCl溶液中的腐蚀行为。结果表明,复合涂层使基体镁合金的腐蚀电位提高了1.339V,自腐蚀电流密度降低为基体的1/10;在浸泡初期和中期,复合涂层通过阻碍腐蚀介质向基体的传质和腐蚀产物的输运提高了镁合金的耐腐蚀性,经270h的浸泡,复合涂层完全失效。  相似文献   

4.
AZ31镁合金冷喷涂纳米晶铝涂层腐蚀性能   总被引:1,自引:0,他引:1  
为了改善镁合金耐蚀性,采用冷喷涂技术在镁合金AZ31上制备出纳米晶铝涂层,分析了涂层的微观组织,通过电化学试验及中性盐雾试验研究了涂层及基体的腐蚀性能。试验结果表明,涂层的纳米晶结构成功保留,涂层组织致密、厚度均匀,涂层硬度到达111.44 HV0.025,明显高于镁合金基体的硬度(66.8 HV0.025);涂层的自腐蚀电位(-0.78 V)高于镁合金基体的自腐蚀电位(-1.79 V),涂层的自腐蚀电流密度(5.3×10-7A/cm2)比镁合金基体的自腐蚀电流密度(2.45×10-5A/cm2)低2个数量级,盐雾试验表明涂层的耐腐蚀性能明显优于镁合金基体。  相似文献   

5.
铝基非晶纳米晶复合涂层研究   总被引:2,自引:0,他引:2  
采用自动化高速电弧喷涂系统,用自行研制的粉芯丝材,在AZ91镁合金基体表面上制备出Al-Ni-Y-Co非晶纳米晶复合涂层.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)分析了Al-Ni-Y-Co非晶纳米晶复合涂层的微观形貌和组织结构,结果表明Al-Ni-Y-Co非晶纳米晶复合涂层是由非晶相和纳米晶化相共同组成的,涂层结构致密,孔隙率约为1.8%.Al-Ni-Y-Co非晶纳米晶复合涂层的平均显微Vickers硬度值为311.7 HV0 1,结合强度为26.8 MPa.涂层的抗磨损耐腐蚀性能优于Al涂层和AZ91镁合金基体;其相对耐磨性约为Al涂层的10倍,为AZ91镁合金的6倍;其自腐蚀电位值正于Al涂层及AZ91镁合金,自腐蚀电流密度值约为Al涂层的1/2,AZ91镁合金的1/5;其腐蚀后的表面形貌比Al涂层和AZ91镁合金平整,点蚀较少.Al-Ni-Y-Co非晶纳米晶复合涂层的耐磨防腐综合性能优异.  相似文献   

6.
范春  龙威  周小平 《表面技术》2018,47(2):225-230
目的在AZ31B镁合金表面火焰喷涂制备Al-Mg_2Si复合涂层,研究其耐腐蚀和耐磨性能。方法用SEM、电化学测试仪、高速往复摩擦磨损测试仪和超景深三维显微镜检测分析不同成分配比的Al-Mg_2Si复合涂层的耐腐蚀和摩擦磨损性能。结果 Al-Mg_2Si复合涂层的电位较AZ31B镁合金基体正,且Al含量越少,电位正移越明显。Al(20%)-Mg_2Si复合涂层的自腐蚀电位正移得最多,正移了0.5288 V;自腐蚀电流密度最小,为3.298×10-6 A/cm2。Al加入量越少,复合涂层的磨损率和摩擦系数越小,当Al质量分数为20%时,两者均达到最小值,分别为2.48×10-4 mm3/(N·mm)和0.25。结论 Al含量越少,Al-Mg_2Si复合涂层的耐蚀和耐磨性能越好。  相似文献   

7.
王丹  周小平 《表面技术》2016,45(9):51-55
目的提高AZ31B镁合金的耐蚀性。方法采用氧乙炔在AZ31B镁合金表面喷熔Al涂层,对喷熔的Al涂层进行扫描电镜(SEM)分析,采用能谱仪(EDS)对涂层进行面扫描检测涂层元素的分布情况。利用电化学分析法、浸泡试验检测喷熔涂层的耐蚀性,用维氏硬度计测试喷熔涂层的硬度。结果喷熔的Al涂层与AZ31B镁合金基体结合良好,呈现冶金结合。喷涂过程中,喷熔的Al涂层呈等轴晶生长。通过面扫描结果可知,喷熔涂层中发现Mg元素,说明基体中的Mg元素发生了扩散。通过电化学测试可知,喷熔Al涂层的自腐蚀电压为-1.45 V,比AZ31B镁合金的自腐蚀电压(-1.5 V)降低了0.05 V;喷熔Al涂层的自腐蚀电流密度为1.58×10~(-4) A/cm~2,约为AZ31B镁合金自腐蚀电流密度(8.66×10-4 A/cm2)的1/5。由浸泡实验可知,喷熔Al涂层的平均腐蚀速率约为AZ31B镁合金的1/5倍。喷熔Al涂层的显微硬度是AZ31B镁合金基体硬度的2.9倍。结论喷熔Al涂层的组织较好,性能比镁合金基体有所提高。  相似文献   

8.
采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)及动电位极化测试等手段研究了稀土镧添加量对AZ91D镁合金组织和耐蚀性的影响。结果表明:镧的添加使AZ91D镁合金组织细化,β-Mg_(17)Al_(12)相的体积分数减小,并且由连续网状分布变为断续、弥散分布,同时生成新的稀土相Al_(11)La_3,其腐蚀速率明显降低,自腐蚀电位和耐蚀性得到提高。当镧的质量分数为1.0%时,镁合金的腐蚀速率为0.157mg·cm~(-2)·h~(-1),约为AZ91D镁合金的58%;腐蚀电流密度为8.8×10~(-4) A·cm~(-2),相对于AZ91D镁合金的显著降低;自腐蚀电位为-1 429mV(SCE),相比于AZ91D镁合金的自腐蚀电位提高了95.4mV。  相似文献   

9.
采用热喷涂技术,在AZ31B表面制备Al-80Mg_3Sb_2复相涂层。采用XRD、SEM、电化学工作站和电化学腐蚀磨损试验仪对涂层进行物相、微观组织、极化曲线和腐蚀磨损性能的测试。结果表明,涂层主要物相为Mg_3Sb_2和Al,组织均匀,自腐蚀电位为-0.98V,自腐蚀电流密度为0.048×10~(-3 )A/cm~2;磨损腐蚀时,AZ31B的开路电位始终为一条直线;而涂层开路电位则是加载后下降,卸载后上升;在往复磨损的一个周期内(约0.008s),AZ31B和涂层的开路电位都呈微"W"形;涂层的平均摩擦因数(0.10)小于AZ31B的(0.14)。  相似文献   

10.
AZ91D镁合金微弧氧化膜的腐蚀行为研究   总被引:5,自引:0,他引:5  
郅青  高瑾  董超芳  李晓刚 《金属学报》2008,44(8):986-990
利用双向全波脉冲电源对AZ91D镁合金在硅酸盐体系中进行了微弧氧化处理,通过电化学阻抗谱(EIS)测试、极化曲线分析并结合XRD和SEM等分析方法对微弧氧化处理的镁合金腐蚀行为进行了研究.结果表明,微弧氧化膜表面分布着几微米的微孔,微弧氧化膜中主要含有MgF2,Mg2SiO4和Al2O3.AZ91D镁合金经过微弧氧化处理之后,耐蚀性能明显提高,自腐蚀电流密度降低3个数量级,自腐蚀电位高出约300 mV,阻抗值高出3个数量级,研制的微弧氧化膜对镁合金具有很好的防腐保护性能.  相似文献   

11.
镁合金直接化学镀Ni-B镀层的腐蚀电化学行为研究   总被引:1,自引:0,他引:1  
  研究了镁合金表面化学镀Ni-B合金的电化学行为,采用电化学动电位扫描极化曲线和交流阻抗研究了Ni-B镀层的腐蚀电化学行为,结果表明,Ni-B镀层在3.5%NaCl溶液中具有优良的耐蚀性能.所得Ni-B镀层的自腐蚀电位在-400 mV左右,相对于基体-1460 mV提高了1000 mV,自腐蚀电流密度小于0.7 μA/cm2,相对于基体28.5 μA/cm2降低了近两个数量级,说明Ni-B镀层能够有效地提高AZ91D 镁合金的耐腐蚀性能,使AZ91D镁合金在35%NaCl溶液腐蚀介质中的腐蚀速度明显降低.电化学交流阻抗测试结果符合极化曲线的测量结果,化学镀Ni B镀层后的AZ91D镁合金在3.5%NaCl溶液中的阻抗值相对于基体提高两个数量级,表现为自腐蚀电流降低,阻抗值相应提高.  相似文献   

12.
Al扩散涂层对AZ91D Mg合金耐腐蚀性能的影响   总被引:2,自引:0,他引:2  
通过磁控溅射Al和真空退火的方法,在AZ91DMg合金表面得到Al扩散涂层.利用XRD衍射和SEM观察表征了表面层的相组成和形貌;利用动电位极化测试研究了原始的和经表面处理的AZ91D在3.5%NaCl溶液中的腐蚀行为.结果表明:经上述表面处理的合金表面层结构为Mg-Al金属间化合物,自腐蚀电位提高,腐蚀电流密度减小,耐腐蚀性能提高.  相似文献   

13.
AZ91D镁合金微弧氧化膜耐蚀性的试验研究   总被引:6,自引:0,他引:6  
研究了AZ91D镁合金微弧氧化膜在复合铝酸盐溶液中的耐蚀性。利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了AZ91D镁合金微弧氧化膜的物相和表面形貌;利用IM6e型电化学工作站测量了氧化膜的电化学阻抗和稳态电流/电位极化曲线;利用CMB-1501B型便携式瞬时腐蚀速度测量仪测量了氧化膜的腐蚀电流密度Icorr和年腐蚀深度MMA。试验结果表明,微弧氧化的镁合金耐蚀性提高了2~3个数量级,镁合金微弧氧化膜主要由MgO、MgAl2O4、Al12Mg17组成。  相似文献   

14.
目的提高镁合金的耐腐蚀性能。方法采用超音速火焰喷涂技术,在AZ61镁合金表面引入Ni Cr Al作为中间层,最终在镁合金表面构筑一层铁基非晶涂层。通过扫描电子显微镜、X射线衍射仪、差热分析仪、显微硬度测试仪、开路电位测试仪、动电位极化测试仪、X射线光电子能谱仪和接触角测量仪,分别评价了镁合金基体和铁基非晶涂层的形貌特征、微观结构、热稳定性、力学性能、腐蚀行为和表面性质。结果在AZ61镁合金表面成功构筑了一层厚度约200~240μm的铁基非晶涂层,该涂层在XRD有效分辨率内呈单一非晶结构。热分析结果表明,该非晶涂层的起始晶化温度可达657℃,具有极高的热稳定性。铁基非晶涂层和AZ61镁合金的显微硬度分别为892HV和71HV,合金表面显微硬度提高了10倍以上。在模拟海水中,AZ61镁合金和铁基非晶防护涂层的稳态开路电位分别为-0.59V和-1.58V,自腐蚀电流密度分别为80μA/cm~2和4μA/cm~2;在酸雨介质中,镁合金和非晶涂层的稳态开路电位分别为-0.45 V和-1.51 V,自腐蚀电流密度分别为7.27μA/cm~2和1.64μA/cm~2。去离子水在AZ61镁合金的表面润湿角为(59.8±1.5)°,而铁基非晶涂层的接触角为(74.4±0.6)°。结论在镁合金表面构筑铁基非晶涂层,可以显著提高镁合金的耐蚀性,同时非晶涂层高的热稳定性和显微硬度,意味着良好的耐热和耐磨性能。  相似文献   

15.
采用热浸镀工艺在AZ91D镁合金化学镀Ni底层上获得了纯Sn镀层.采用SEM、XRD、盐雾试验和电化学动电位扫描极化曲线研究了镀层热处理前后镀层的组织及结构和耐腐蚀性能.结果表明,镁合金表面镀Sn具有优良的耐腐蚀性能,经72 h中性盐雾试验表面未被腐蚀,镀层自腐蚀电位相对于基体有较大的提高,腐蚀电流密度明显下降,镀层经...  相似文献   

16.
目的研究Al-TiC涂层组织和性能的特性,以提高镁合金涂层的硬度和耐蚀性能。方法采用Nd:YAG固体激光器,在AZ91D镁合金表面通过激光熔覆制备Al-TiC涂层,采用光学显微镜、X射线衍射仪、显微硬度计、电化学工作站,对熔覆层的组织形貌、物相结构、显微硬度和耐蚀性能进行测定和分析。结果 Al-TiC涂层的主要组成相有AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,Al和TiC等。激光熔覆层的厚度约为0.35 mm,表面成型良好,结合层晶粒细小,熔覆层与镁合金基体之间结合良好,呈大波浪形。熔覆层试样的平均显微硬度为224HV,约为基体显微硬度(62HV)的4倍,由此表明熔覆层对镁合金硬度有明显的增强作用。镁合金基体的自腐蚀电位为-1.475 V,自腐蚀电流密度为7.556×10~(–5) A/cm~2,熔覆层试样的自腐蚀电位为-1.138V,自腐蚀电流密度为4.828×10~(–5) A/cm~2,与镁合金基体相比,熔覆层的腐蚀电位值增加,腐蚀电流密度值变小,熔覆层的耐蚀性能得到提高。结论采用激光熔覆技术,能够在AZ91D镁合金基体表面制备Al-TiC涂层,由于硬质相AlTi_3(C,N)_(0.6),Al_3Mg_2,Mg_2Al_3,TiC等的存在,熔覆层的显微硬度和耐蚀性能显著提高。  相似文献   

17.
姚军  崔反东  李仕臣 《热加工工艺》2014,(18):127-129,133
为改善AZ91D镁合金的表面性能,采用6 kW连续CO2激光器在AZ91D镁合金表面熔覆Ti74Ni20Si4B2涂层。用光学显微镜和带能谱分析的扫描电镜观察熔覆层组织和结合区域的形貌以及元素分布,测试合金层的显微硬度、耐磨性和耐蚀性。结果表明,合金层与基体结合良好,并且元素分布没有明显界限。由XRD分析发现,生成TiBx、B4Si等化合物;通过对熔覆层和基体性能测试,发现平均显微硬度提高至625 HV0.05,耐磨性提高了1倍,极化曲线动态极化腐蚀电位提高了0.194 V,腐蚀电流密度降低了0.093 A·cm-2,在3.5%的NaCl溶液中耐腐蚀性能提高了约96%。  相似文献   

18.
范春  龙威  周小平 《表面技术》2018,47(4):260-266
目的研究Al-Mg_2Si复合涂层在3.5%NaCl溶液中的腐蚀-磨损性能。方法用电化学工作站(CHI660E)、腐蚀-磨损试验机测试试样的电化学行为及实时监测在3.5%NaCl溶液中的开路电位、摩擦系数和干摩擦性能,并采用扫描电镜(SEM)、超景深三维显微镜对磨痕特征进行表征。结果镁合金自腐蚀电位为-1.4888V,腐蚀电流密度为2.817×10~(-3) A/cm~2。与镁合金基体相比,Al-Mg_2Si复合涂层的自腐蚀电位正移了0.5288V,腐蚀电流密度降低了3个数量级。腐蚀磨损过程中,Al-Mg_2Si复合涂层的开路电位(OCP)为-0.9202 V,比镁合金基体高0.5713 V。干摩擦过程中,复合涂层的稳定摩擦系数为0.28,比镁合金低0.07。复合涂层干、湿磨损率相差44.72×10~(-4) mm~3/(N?mm),其值是镁合金基体干、湿磨损率相差值的0.52倍,且均远远大于各自纯机械磨损率。结论在腐蚀磨损过程中,腐蚀是造成磨蚀损失的主要原因,且Al-Mg_2Si复合涂层的耐磨蚀性能优于镁合金基体。  相似文献   

19.
采用氧乙炔火焰喷涂方法,在AZ31B镁合金表面喷涂Al分别添加5%、10%、15%的(AlB_(12)+Al_2O_3)复合涂层,并对复合涂层进行热压处理;采用扫描电镜(SEM)观察复合涂层的微观组织,X射线衍射仪(XRD)检测涂层的物相,电化学工作站测试复合涂层的耐蚀性,显微硬度检测复合涂层的硬度,摩擦磨损机检测涂层的耐磨性能。结果表明:随着(AlB_(12)+Al_2O_3)含量的增加,复合涂层的孔隙率及孔洞减少,涂层致密;腐蚀电位从-1.5 V升高到-1.15 V,腐蚀电流从8.66×10~(-4)A/cm~2降到2.82×10~(-4)A/cm~2;硬度从66 HV增加到225 HV;磨痕也是从深到浅。综上所述,(AlB_(12)+Al_2O_3)复合涂层显著改善了镁合金的耐磨和耐蚀性能。  相似文献   

20.
采用氧乙炔火焰喷涂方法,在AZ31B镁合金表面喷涂Al分别添加5%、10%、15%的(AlB_(12)+Al_2O_3)复合涂层,并对复合涂层进行热压处理;采用扫描电镜(SEM)观察复合涂层的微观组织,X射线衍射仪(XRD)检测涂层的物相,电化学工作站测试复合涂层的耐蚀性,显微硬度检测复合涂层的硬度,摩擦磨损机检测涂层的耐磨性能。结果表明:随着(AlB_(12)+Al_2O_3)含量的增加,复合涂层的孔隙率及孔洞减少,涂层致密;腐蚀电位从-1.5 V升高到-1.15 V,腐蚀电流从8.66×10^(-4)A/cm^2降到2.82×10^(-4)A/cm^2;硬度从66 HV增加到225 HV;磨痕也是从深到浅。综上所述,(AlB_(12)+Al_2O_3)复合涂层显著改善了镁合金的耐磨和耐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号