首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 通过添加铜包覆六方氮化硼(h-BN@Cu)粉末,改善激光熔覆Ni基NbC涂层的性能。方法 采用激光熔覆技术,使用添加不同质量分数铜包覆六方氮化硼的镍基碳化铌复合粉末,在45钢基体表面沉积镍基复合涂层。利用扫描电子显微镜(SEM)和X射线衍射(XRD)设备,研究h-BN@Cu对Ni60/NbC的激光熔覆镍基复合涂层微观结构的影响,利用显微硬度计和布鲁克UMT-2摩擦磨损试验机及白光干涉模块,测量熔覆层的显微硬度、摩擦磨损系数和磨痕宽度。结果 熔覆层中的主相为Ni-Cr-Fe,除此之外还存在FeNi3、CrB、M7C3、NbC、M23C6、Cr2Nb等多种相。研究发现,添加的润滑相h-BN@Cu与硬质相NbC会发生部分分解,Nb原子和B原子进入熔池,与熔池中的Cr原子反应,生成CrB、Cr2Nb等,这些金属间化合物具有硬度高、耐磨性好等特点。当h-BN@Cu的质量分数为10%时,熔覆层的显微硬度为650HV1.0,摩擦系数为0.4,磨痕宽度为0.406 mm。结论 相比于不添加h-BN@Cu的Ni60/NbC熔覆层,添加h-BN@Cu的Ni60/NbC熔覆层的平均硬度略微下降,但熔覆层硬质相分布更加均匀,此时硬度仍为45钢基体硬度的3.1倍,摩擦系数降低约27%,磨痕宽度减小约21%。  相似文献   

2.
纳米Y2O3-Co基合金激光熔覆复合涂层的分析   总被引:2,自引:1,他引:1       下载免费PDF全文
采用纳米Y2O3和Co基合金粉末,并利用激光表面熔覆技术和堆焊技术在Ni基合金基体上制备了纳米Y2O3-Co基合金复合涂层.运用扫描电镜(SEM)等测试方法,研究了复合涂层的显微组织和显微硬度,通过磨损试验和腐蚀试验分析了激光熔覆涂层和单一堆焊层的耐磨性和耐蚀性.结果表明,激光熔覆层显微组织由熔合区、细等轴状枝晶区及粗枝晶区构成;激光熔覆层的显微硬度由堆焊层的512.8 HV提高到868.9HV;激光熔覆层的耐磨性提高了51.2倍,40 min磨损量由堆焊层的25.6 mg降低到激光熔覆层的0.5 mg;激光熔覆层在10%HCl、10% HNO3和10% NaOH中的耐腐蚀性均比堆焊表面有明显改善.  相似文献   

3.
利用表面激光熔覆技术对高锰钢试样进行了不同工艺条件的表面强化处理,对其组织和表面硬度进行观察和测试,并对其中一组结果最为理想的试样进行了熔覆层显微硬度、耐磨性及TEM分析。结果表明:激光熔覆层的硬度、耐磨性较高锰钢基体均有大幅度提高,在熔覆层与基体的过渡区内,局部存在非晶组织。  相似文献   

4.
原位合成AlN-Fe3Al增强铁基等离子熔覆层结构及性能   总被引:1,自引:1,他引:0  
目的 采用等离子熔覆技术,制备性能优良的AlN-Fe3Al增强Fe基熔覆层。方法 采用Al粉和Fe基合金粉为熔覆材料,利用等离子熔覆技术,以氮气为保护气体和反应气体,在Q235基体上制备Fe基熔覆层。采用X射线衍射仪、扫描电镜、显微硬度计、磨损试验机和电化学工作站,研究了Al对Fe基熔覆层的相组成、组织形貌、硬度、耐磨性和耐腐蚀性的影响。结果 以Fe基合金粉为熔覆材料时制备的熔覆层主要由α-Fe和Cr组成,Al(质量分数为6%)的加入使熔覆层中出现AlN、Fe3Al及Cr5Al8相。两种情况下制备的熔覆层均成形良好,且与基体呈冶金结合。含Al熔覆层中原位合成的AlN颗粒弥散分布于熔覆层中,尺寸小于5 μm。Al的加入使熔覆层的最高硬度由之前的340HV0.5增加至1350HV0.5,使熔覆层的耐磨性提高4.6倍。并使熔覆层表面形成钝化膜,显著提高了其耐腐蚀性。结论 采用等离子熔覆技术制备出的AlN-Fe3Al增强Fe基熔覆层,其耐磨性和耐腐蚀性得到显著提高。  相似文献   

5.
采用高频感应熔覆的方法在42CrMo钢基体表面获得微米WC-12Co涂层,并用电子显微镜、显微硬度计研究了熔覆层的显微组织、硬度,并通过抗热震试验分析了熔覆层与基体的结合强度,同时研究了该熔覆层的耐腐蚀性。结果表明:该熔覆层组织均匀,与基体结合强度高,耐腐蚀性好,硬度为970 HV0.5,分布较为均匀。  相似文献   

6.
纯铜基体上激光熔覆Ni60A涂层的试验研究   总被引:4,自引:1,他引:3  
为了提高铜质结晶器的耐磨性和耐蚀性,在纯铜基体上进行了激光熔覆Ni60A涂层的试验研究.对熔覆层和熔覆层与基体结合区的形貌和微观组织进行了研究.对熔覆层的硬度、耐磨性和耐蚀性进行了测定.结果表明,熔覆层呈典型的快速凝固特征,组织良好,可以对基体提供强防护作用;熔覆层与基体元素相互渗透和稀释,得到了具有良好冶金结合与致密度的过渡区,而且基体稀释率很小;通过此表面改性处理可明显提高基体的耐磨性和耐蚀性.  相似文献   

7.
利用激光熔覆技术在7CrSiMnMoV钢表面熔覆一层Ni/WC涂层,分析了熔覆层横截面显微硬度随深度的变化情况,并用X射线衍射仪对熔覆层的物相组成及WC在激光熔覆过程中的变化情况进行了分析。同时,在金相显微镜下观察了激光熔覆层与基体材料的结合情况,并对结合处产生变化的原因作了一定的解释。结果表明,采用Ni60+30%WC金属合金粉末对基体材料进行表面强化处理后,能显著提高基体材料的表面硬度,这对提升模具的耐磨性和延长其使用寿命有利,而且熔覆层与基体材料之间形成良好的冶金结合。  相似文献   

8.
采用激光熔覆技术在QA19-4铝青铜合金表面激光熔覆Fe基合金。采用OM、XRD、显微硬度计对熔覆层的组织、物相和硬度进行分析,测试了铝青铜基体、Fe基激光熔覆层的冲蚀磨损性能。结果表明:激光熔覆层与铝青铜基体形成了冶金结合,无孔洞、夹杂和裂纹等缺陷,熔覆层中主要组织为γ-(Fe-Ni)、CrFe_4、Cu_(3.8)Ni等。熔覆层显微硬度最高为498 HV,平均显微硬度320 HV,是基体硬度的2倍;随冲蚀时间的延长,熔覆层失重量比QA19-4铝青铜基体的失重量要低得多,熔覆层的耐磨性比基体组织的耐磨性提高了近2倍,激光熔覆层的冲蚀耐磨性能得到明显提高。  相似文献   

9.
采用等离子熔覆技术在718H模具钢表面熔覆铁基合金粉末,借助光学显微镜、X射线衍射仪、扫描电镜、能谱仪、显微硬度计和材料表面性能综合测试仪对熔覆层的显微组织、化学成分、物相组成、显微硬度和摩擦磨损性能进行了分析。结果表明:等离子熔覆铁基合金粉末的熔覆层的组织近表面为细晶区,中间为柱状晶,熔覆层与热影响区的交界处有一条平面晶组织,熔覆层与基体形成了冶金结合,热影响区组织为板条状马氏体;从基体到表面硬度大致呈梯度分布,熔覆层的硬度达到800 HV,大于基体材料的硬度;熔覆层中有较多M7C3碳化物和γ-(Cr-Ni-Fe-C)合金固溶体相,磨损量小于基体材料的,熔覆层的耐磨性明显好于基体材料。  相似文献   

10.
通过激光熔覆Al-Si涂层的方法对AZ31镁合金表面进行了改性,研究了熔覆层的物相组成、显微组织、显微硬度、耐磨性和耐腐蚀性能。结果表明,熔覆层主要由Mg2Si、Mg17Al12、Al3Mg2、Al2Mg相组成,与基体呈冶金结合,硬度最高达到152 HV;耐磨性和耐腐蚀性较好,磨损失重及腐蚀速率分别为基体的1.75倍和1.88倍。  相似文献   

11.
对体育器械用AZ91合金进行了表面等离子熔覆改性处理。研究了AZ91合金基材、TiB_2-TiC和TiB_2-TiC:Al=2:1改性层的显微组织,并对改性层的硬度、耐磨性和耐腐蚀性能进行了研究。结果表明,随基体表面距改性层表面距离的增加合金,合金显微硬度逐渐降低,熔覆层的硬度最高;改性层中的TiB_2、TiC硬质相以及Mg_(17)Al_(12)相的存在可提高表面耐磨性;改性层耐腐蚀性得到提高,TiB_2-TiC:Al=2:1改性层的耐腐蚀最好。  相似文献   

12.
分别用半导体激光与超音速火焰喷涂设备在45钢基体上制备Ni60合金涂层。用扫描电镜、金相显微镜、XRD对熔覆层进行微观组织和成分的研究。并对熔覆层的显微硬度和耐磨性进行分析。结果表明:激光熔覆层质量良好、无缺陷,熔敷层与基体之间形成良好的冶金结合;超音速火焰喷涂的熔覆层与基体为机械结合,结合力相对较弱。激光熔覆层内组织致密、晶粒细小且析出了C化物与Cr化物,这使激光熔敷层的硬度与耐磨性高于超音速火焰喷涂。  相似文献   

13.
《铸造技术》2016,(12):2591-2593
采用激光熔覆技术在汽车用镁合金表面制备Al-Si合金涂层,对Al-Si合金涂层的组织和性能进行研究。结果表明,Al-Si合金熔覆层组织主要为树枝晶,主要物相为Mg_2Al_3、Mg_(17)Al_(12)、Mg_2Si。镁合金激光表面熔覆Al-Si合金涂层硬度分为4个不同区域,分别为熔覆层、结合区、热影响区和镁基体,其中次表层硬度最高,基体层硬度最低。镁合金表面随着激光功率的增加,熔覆层耐磨性和耐腐蚀性能提高。随着激光功率的增加,耐磨性先增加后降低,耐蚀性逐渐提高。  相似文献   

14.
Fe-Al金属间化合物对钢表面增强工艺参数的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
张德库  王克鸿  张晶  赵楠 《焊接学报》2010,31(12):85-88
进行了Q235钢表面的预制粉末覆层的等离子熔覆,研究了等离子熔覆工艺对熔覆层表面成形的影响,在此基础上得到了合适的熔覆工艺参数.进行了熔覆层组织的金相分析及熔覆层显微硬度测量与分析.结果表明,熔覆电流、焊枪摆动频率、熔覆速度的改变均能引起热输入的明显变化,影响熔覆层组织形态,基体熔化程度,以及界面的结合状态,进而影响熔覆层的耐磨性及耐腐蚀性.试验条件下的最佳熔覆工艺参数为熔覆电流130 A,熔覆速度5 cm/m in,焊枪摆动幅度4 mm,摆动频率0.4 Hz.  相似文献   

15.
采用等离子堆焊技术在Q235铝电解打壳锤头表面堆焊F40合金粉末熔覆层。利用扫描电镜、能谱仪和显微硬度计等分析等离子堆焊层的微观组织、微区成分和硬度分布。利用磨擦磨损仪对试样进行耐磨性测试,通过恒电位法评估堆焊层和基体的耐蚀性能。结果表明,堆焊层与基体形成了良好的冶金结合,堆焊层为典型的柱状晶组织。等离子堆焊层平均显微硬度为444HV0.1,为基体的2倍;耐磨性为基体的1.6倍;腐蚀速率Rcorr为3.524×10-4 mm/a,为基体的1/(4.2×104)。等离子堆焊后Q235钢材料的耐磨性、硬度和耐腐蚀性均有显著提高,有望提高电解铝打壳锤头的耐磨耐蚀性能。  相似文献   

16.
采用LWS-1000型Nd∶YAG激光器在1050铝合金表面激光熔覆制备高硅铝熔覆层。探索不同激光功率和扫描速度对熔覆层质量的影响,分析熔覆层的微观组织,测试熔覆层的硬度和耐磨性能。结果表明:在优化工艺参数下(激光功率170W,激光扫描速度200mm/min)制备出的高硅铝熔覆层与基体结合良好、组织致密、无气孔和裂纹,熔覆层中存在大量初晶硅,未发现明显共晶组织。熔覆层的横截面硬度值达到245HV,进行耐磨性测试后,相比基体耐磨性能明显提高。  相似文献   

17.
氩气保护下碳化钨对镍基合金熔覆层组织及耐磨性的影响   总被引:3,自引:3,他引:0  
杨勇  赵靖宇  李静  杨景凤  赵彬  孙玉福 《表面技术》2015,44(2):55-59,82
目的改善Q235钢板的耐磨性,以取代65Mn在振动筛筛板中的应用。方法采用电阻丝加热非真空熔覆技术,在氩气保护条件下于Q235钢表面制备碳化钨/镍基合金复合熔覆层。通过SEM和XRD观察分析熔覆层与基体的结合方式、碳化钨分布、熔覆层组织及相组成,通过硬度测试及磨损试验,分析碳化钨对熔覆层耐磨性的影响。结果熔覆层与钢基体达到冶金结合。熔覆层主要由奥氏体、碳化钨、碳化物及硼碳复合化合物等相组成,碳化钨弥散分布其中。当碳化钨用量为熔覆粉末总质量的35%时,熔覆层硬度为47.3HRC,磨损率为0.08 mg/m,约是钢基体耐磨性的5倍,65Mn耐磨性的4倍。结论采用氩气保护制备的碳化钨熔覆层与基体结合良好,提高了钢基体的耐磨性。  相似文献   

18.
《铸造技术》2016,(9):1870-1872
采用激光熔覆技术在AZ31B镁合金表面制备Al-Cu合金熔覆层,研究不同功率下,熔覆层耐磨性和耐腐蚀性的差异。结果表明,当激光功率为400 W时,熔覆层表面的摩擦系数为0.215,明显小于基体的摩擦系数。其对应的腐蚀电位值和腐蚀电流密度值比基体提高了170 mV,降低了一个数量级。  相似文献   

19.
激光熔覆Cu-TiB2复合材料涂层及其耐磨性   总被引:5,自引:0,他引:5  
采用500W YAG固体激光器,在纯铜表面成功地原位合成了Cu-TiB2复合材料层,测定了Cu-TiB2原位复合材料熔覆层的显微硬度,研究了熔覆层的磨损行为。结果表明,激光熔覆复合材料层组织完好,TiB2颗粒细小均匀,涂层与基体呈较好地冶金结合;熔覆层表面的显微硬度达480-580HV,耐磨性是纯铜的15~20倍;在保证界面良好的基础上,光斑直径一定,硬度及耐磨性随扫描速度的增大、激光功率的减小而增大。  相似文献   

20.
柱塞表面激光熔覆铁基涂层的强韧化机理   总被引:3,自引:3,他引:0       下载免费PDF全文
文中在柱塞表面激光熔覆制备高硬度铁基涂层,采用SEM,XRD,EPMA和TEM等手段研究熔覆层组织特征及耐磨性,阐述其强韧化机理.结果表明,激光熔覆铁基合金涂层成形良好,无裂纹及气孔等缺陷,熔覆层与基体呈冶金结合,组织由(Ni,Fe)固溶体、(Cr,Fe)23C6碳化物和少量孪晶马氏体组成.铁基熔覆层的强化机制主要有细晶强化、固溶强化、弥散强化以及马氏体强化;熔覆层内(Ni,Fe)固溶体及细晶强化的综合作用,保证了高硬度铁基涂层的韧性.铁基熔覆层显微硬度较45钢提高4倍,最大值HHV0.2=850 GPa;熔覆层耐磨性明显高于45钢,45钢表面出现大面积疲劳剥落,铁基熔覆层磨损面平整,磨痕很浅且少,磨损机制为轻微的磨粒磨损.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号