共查询到20条相似文献,搜索用时 15 毫秒
1.
采用超音速火焰喷涂设备制备了Fe基非晶/纳米晶涂层,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、显微硬度计等对涂层的微观形貌、结构特征及显微硬度进行了研究。涂层由变形带状粒子、未熔颗粒及少量孔隙组成,涂层致密。由于该方法的冷却速度高,涂层中形成了非晶,后续涂层的加热使部分非晶转变为纳米晶。涂层的显微硬度平均为1084HV0.2,明显高于基体;靠近涂层的基体表面产生了加工硬化。 相似文献
2.
3.
超音速火焰喷涂制备钼基非晶纳米晶涂层的研究 总被引:11,自引:0,他引:11
利用超音速火焰喷涂(HVOF)技术,在0Cr13Ni5Mo不锈钢基体上成功的制备出了一种Mo基非晶纳米晶复合涂层。这种涂层组织均匀致密,孔隙率小,约为3.4%,呈典型的层状分布;涂层是由非晶和纳米晶组成,在非晶基体中均匀分布了纳米晶粒。根据衍射峰的半高宽,计算出Mo基涂层中的晶粒平均尺寸为25~70nm,与通过透射电镜的观察得到晶粒大小数20~70nm相符;涂层具有较高的硬度,平均显微硬度为859.0HV50;所获得的非晶纳米晶涂层具有较高的热稳定性,在1020.1℃以下使用,不会发生晶型转变。 相似文献
4.
《材料热处理学报》2016,(6)
采用超音频感应熔覆技术获得高质量具有冶金结合的感应重熔超音速火焰喷涂(HVOF)铁基涂层。借助XRD、SEM/EDS、显微硬度计、极化曲线和交流阻抗手段综合分析涂层微观形貌、物相组成、显微硬度分布以及耐蚀性能。研究结果表明,感应重熔处理后涂层孔隙率从5.74%大幅降低至0.43%,感应重熔HVOF铁基涂层由γ-Fe、硼化物(Cr,Fe)2B以及少量的共晶体γ-Fe/(Cr,Fe)2B组成。在模拟海水溶液电化学测试结果显示,感应重熔HVOF铁基涂层极化曲线呈现典型活化-钝化特征,感应重熔涂层自腐蚀电流密度比HVOF铁基涂层明显降低。交流阻抗结果显示感应重熔HVOF铁基涂层的容抗弧半径相对HVOF铁基涂层更大。感应重熔后涂层内部富氧夹杂物以及孔隙率显著减少,有效阻隔氯离子通过孔隙连接形成的扩散通道进入涂层内部形成腐蚀原电池,涂层耐蚀性能显著提高2.74倍。 相似文献
5.
目的通过优化涂层制备工艺,制备致密的Fe基非晶合金涂层,以提高非晶合金涂层的耐磨性。方法采用活性燃烧高速燃气超音速火焰喷涂(AC-HVAF)技术,通过工艺优化,制备了组织致密的Fe基非晶合金涂层。利用场发射扫描电子显微镜、X射线衍射仪、维氏显微硬度计、摩擦磨损试验机、三维光学轮廓仪等设备,对非晶合金涂层的组织结构、摩擦性能和磨损机制进行了深入分析。结果 Fe基非晶合金涂层呈现典型的非晶结构,涂层厚度在300μm左右,涂层的平均显微硬度值高达1000HV0.1。在干摩擦试验条件下,Fe基非晶合金涂层的磨损量远低于304不锈钢材料,磨损率是304不锈钢基体的1/3~1/2。Fe基非晶合金涂层的磨损机制以疲劳磨损为主,伴随着氧化磨损。氧化磨损主要是由干摩擦过程中产生的摩擦热导致,氧化磨损加速了片层剥落。结论 Fe基非晶合金涂层孔隙率的降低和非晶相含量的提高,有利于稳定摩擦系数和改善涂层的耐磨损性能。 相似文献
6.
超音速火焰(HVOF)喷涂Fe-Cr基涂层的组织与耐蚀性 总被引:3,自引:0,他引:3
采用多元Fe—cr基合金(含Si、Mn、B等)作为喷涂粉末,用JP-5000超音速火焰喷枪在不锈钢基体上制备厚度约200μm的Fe基涂层。采用金相显微镜、X射线衍射仪、扫描电镜、透射电镜对涂层的组织结构进行了观察和分析,采用盐雾试验箱对涂层的耐蚀性进行了初步研究。结果表明,涂层主要由非晶、bcc晶体结构的纳米晶及微米级硼化物组成;非晶基体产生了明显晶化,形成了胞状bcc结构的纳米仪.Fe,其尺寸约为10~30nm^3,涂层致密,孔隙率约为1%。涂层的耐盐雾腐蚀的性能明显高于1Cr18Ni9Ti不锈钢。前者主要为孔蚀,后者主要为晶间腐蚀。 相似文献
7.
选用Fe-10W-4Cr-3Ni-2Mo-4B-4Si-1C(质量比)合金粉末作为喷涂原料,采用大气等离子喷涂工艺在1Cr18Ni9Ti不锈钢基底上制备了Fe基涂层。利用扫描电镜、透射电镜和X射线衍射仪表征了粉末和涂层的相组成和微观形貌;用Olycia m3分析软件对涂层的孔隙率进行测定;用热分析系统对喷涂粉末和涂层从室温到1 173K范围的DSC曲线进行记录;同时,测定了涂层的显微硬度和结合强度。结果表明:大气等离子喷涂制备的Fe基涂层与基底的结合良好,涂层较为致密并且存在灰色氧化带组织,表现出典型的层状组织结构;涂层不但具有低的表面粗糙度和孔隙率,而且具有高的显微硬度和结合强度;所制备涂层中的非晶含量约为89.2%(质量分数),涂层中形成的晶相组织为纳米晶结构。 相似文献
8.
超音速火焰喷涂制备微晶镍基耐蚀合金涂层 总被引:1,自引:1,他引:1
针对导致奥氏体合金涂层腐蚀发生及发展的腐蚀原电池问题和晶间贫铬问题,通过选择镍铬基材料,添加助熔成分硅和形核稀士元素等以及防铬元素偏析成分,采用熔化氩气干雾化工艺,研制出一种新型粉体喷涂材料。采用超音速火焰喷涂方法,利用其“骤冷”热处理特点,提高冷却速度细化晶粒,制备出微晶态镍铬基耐蚀合金涂层。经金相分析、能谱成分分析和X射线衍射(XRD)证明涂层存在微晶且该涂层元素分布均匀,无成分偏析现象。经热分析、硬度检测、海水浸泡电化学腐蚀检测等试验证明,该涂层在786.6 ℃的相变温度以下性质稳定,硬度高达300 HV,耐蚀性能好,为海洋环境钢铁构件防腐蚀提供了一种耐蚀、耐磨的长效保护涂层。 相似文献
9.
超音速火焰喷涂纳米结构涂层研究进展 总被引:1,自引:0,他引:1
超音速火焰(High Velocity Oxy -Fuel,简称HVOF)喷涂具有高速和相对较低的温度两个重要特征,能够获得比普通火焰喷涂或等离子喷涂(Plasma Spray,简称PS)结合强度更高的致密涂层.纳米材料具有独特的表面效应、体积效应及量子尺寸效应,其电学、力学、磁学、光学和热学等性能产生了惊人的变化.随着材料科学技术的深入发展, 在实际生产和生活中运用性能优良的纳米材料倍受人们关注,其中,采用热喷涂技术制备纳米结构涂层是构筑纳米结构材料的最具前途的方法之一.从目前国内外的情况来看,HVOF喷涂纳米结构涂层技术的研究取得了较大的进展.综合国内外文献,总结了HVOF喷涂制备纳米结构涂层的研究现状,着重阐述了热喷涂纳米涂层的基本过程和结合机理,指出了利用HVOF喷涂纳米结构涂层存在的问题,并对热喷涂纳米结构涂层的发展前景作了展望. 相似文献
10.
采用多元Fe-Cr-Ni基合金(含Si、Co、B、Cu等)为喷涂粉末在不锈钢基体表面,用超音速火焰(HVOF)喷涂法制备厚度达200 μm的涂层.采用金相显微镜、扫描电镜、X射线衍射仪对涂层的组织及相组成进行了研究,用显微硬度计和磁致伸缩汽蚀仪对涂层的性能进行了测试.结果表明,该涂层致密,颗粒分布均匀,其显微硬度是基体的5倍,达到1050 HV0.1,靠近涂层的基体表面发生了加工硬化.涂层的抗汽蚀性明显优于ZG06Cr13Ni5Mo不锈钢,前者的质量损失约为后者的1/3. 相似文献
11.
通过机械球磨结合粘结破碎法制备了Mo-B-Ni-Cr复合粉末,然后采用超音速火焰喷涂方法在316L不锈钢基体上制备了MoB/NiCr涂层。采用扫描电镜、X-射线衍射仪、激光粒度、图像法和硬度计等手段观察并分析了粉末和涂层的组织结构。结果表明,复合粉末的组织形态呈近球形,复合粉末各粒子间结合良好;通过X-射线衍射发现,复合粉末的主要物相为Mo、Ni和Cr三相。原位制备的涂层组织致密性良好,孔隙率仅为0. 23%,且涂层扁平粒子间及涂层与基体界面之间结合良好。涂层中原位生成了Mo_2NiB_2三元硼化物。 相似文献
12.
13.
14.
采用等离子喷涂技术制备了FeCrMoCBY铁基非晶涂层,研究了铁基非晶涂层在3.5%NaCl溶液中浸泡不同时长后的电化学腐蚀性能和微观组织结构.结果 表明,在720h的浸泡期间,涂层的耐蚀性经历了先提高后降低的变化,在浸泡216h时达到最优,腐蚀电流密度达到最低,为3.393× 10-5A·cm-2,且此时涂层的表面更... 相似文献
15.
目的通过超音速火焰喷涂(High Velocity Oxygen Fuel,HVOF)的粉末喂料设计,获取结构致密的铁铝金属间化合物涂层,并详细考察热处理对所制备涂层组织结构的影响。方法在铁铝合金粉末喂料中添加质量分数为5%的铝粉,改善喷涂效果,在316L不锈钢表面制备致密的FeAl-Al涂层,并进行真空热处理。采用X射线衍射仪(XRD)、场发射扫描电子显微镜(SEM)、能谱仪(EDS)及维氏显微硬度计,详细分析了涂层在不同热处理温度下的微观组织、成分、结构与显微硬度的变化。结果喷涂态FeAl-Al涂层厚度约为150μm,物相为Fe2Al5,未检测到单质Al。随着热处理温度升高,Fe2Al5相的衍射峰逐渐增强。500℃热处理后,喷涂态涂层中扁平粒子间存在的细微孔隙大量消失,涂层致密性明显提高。但是800℃热处理后,涂层中产生了与界面平行的裂纹。喷涂态FeAl-Al涂层的硬度为465.06HV0.1,500℃热处理2 h后增加至472.06HV0.1,继续提高热处理温度,涂层的显微硬度则明显下降。结论在粉末喂料中引入质量分数为5%的Al粉,可明显改善超音速火焰喷涂效果,获得结构致密、与基体结合牢固的FeAl-Al涂层。合适的热处理能进一步消除喷涂缺陷,使涂层显微硬度增加,微观结构更加致密。 相似文献
16.
《热加工工艺》2020,(8)
以纳米羟基磷灰石(HA)颗粒为原始粉末,通过超音速悬浮液火焰喷涂(HVSFS)法在316L不锈钢基体上制备纳米结构HA涂层。研究了丙烷流量对纳米结构HA涂层相结构、微观结构及力学性能的影响。结果表明:纳米结构HA涂层相结构与丙烷流量相关;该涂层表面由部分熔化粒子形成的粗糙多孔结构组成,涂层与基体界面结合良好;该涂层的显微硬度随丙烷流量(1000~1500 L/h)增加从40.9 HV0.025提高到133.3 HV0.025,弹性模量从3.9 GPa提高到4.9 GPa,涂层磨损率从0.67 mg/(N·m)降低到0.13 mg/(N·m),涂层磨损表面主要呈犁沟与剥落特征。超音速悬浮液火焰喷涂可获得相结构不分解的纳米结构HA涂层,且该涂层的力学性能随丙烷流量的增加而提高。 相似文献
17.
18.
采用超音速火焰(HVOF)喷涂在1Cr18Ni9Ti不锈钢基体上制备了200 pm厚的Fe基(含Cr、Ni等)合金涂层.采用金相显微镜、扫描电镜、显微硬度计、磁致伸缩汽蚀仪对涂层的组织、硬度和抗汽蚀性能进行了研究.结果表明,Fe基合金涂层组织均匀致密,孔隙率低,具有层状结构,涂层的平均硬度为993 HV0.1,是基体硬度的5.8倍;Fe基涂层抗汽蚀性能明显优于1Cr18Ni9Ti不锈钢,1Cr18Ni9Ti不锈钢汽蚀沿晶界和孪晶界破坏,而Fe基合金涂层汽蚀沿表面微小孔隙破坏,破坏由孔隙边缘向外扩展,损伤程度由汽蚀试样表面中心向外递减,最终不同损伤程度的汽蚀坑分布于表面. 相似文献
19.
20.
超音速火焰喷涂及涂层性能简介 总被引:12,自引:0,他引:12
本文简要介绍了超音速火焰喷擦的原理、发展状态;比较了超音速火焰喷涂层、等离子喷涂层,爆炸喷涂层、自熔合金喷熔层以及电镀硬铬层的硬度和耐磨损性能;介绍了超音速火焰喷涂层的部份应用实例及其应用效果。 相似文献