首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
在NH4VO3添加量为1 g/L的Na2Si O3溶液中对ZL108铝合金进行了微弧氧化处理,研究了电流密度对NH4VO3改性微弧氧化膜特性的影响。利用扫描电镜观察了微弧氧化膜形貌,用能谱仪分析了膜层V、O、Al元素分布,用X射线衍射仪分析了膜层的相组成,测试了膜层厚度、硬度和微弧氧化电压变化曲线。结果表明,随电流的增加微弧氧化电压快速升高,导致微弧氧化膜厚度和硬度增加,改变了微弧氧化膜形貌、膜层元素分布及微弧氧化膜相组成。  相似文献   

2.
为了研究添加Al_2O_3微粉对AZ31A镁合金微弧氧化膜特性影响,在不同浓度Al_2O_3微粉氧化液中对其进行了微弧氧化处理。利用扫描电镜(SEM)观察了微弧氧化膜形貌,能谱仪(EDS)分析了膜层表面Ca、Mg、O、Al元素分布,X射线衍射仪(XRD)分析了相组成,测定了膜厚、硬度和氧化液中Al_2O_3表面电荷,讨论了改性机理。结果表明,加入Al_2O_3微粉后,氧化电压随Al_2O_3添加量增加先增加后降低;氧化膜表面孔洞数量和尺寸减小,膜层表面Ca元素分布逐渐减少,成膜效率降低,膜层致密度和表面疏松层硬度提高,氧化膜主要由MgO和MgO_4等相组成。  相似文献   

3.
目的提高铝合金钻杆材料微弧氧化膜层的性能。方法在电解液中加入0~4 g/L的SiC微粉,对7E04铝合金钻杆材料表面生成的微弧氧化膜层进行改性,研究了微弧氧化膜层的氧化电压-时间曲线、厚度、显微硬度、表面形貌、膜层元素含量、相组成和耐蚀性。结果随着SiC微粉质量浓度的增加(0、1、2、3、4 g/L),氧化电压不断增加,在4 g/L时几乎达到550 V。微弧氧化膜层的厚度和显微硬度增加,各浓度下的膜层厚度分别为42.3、43.6、45.0、45.3、50.0μm,膜层显微硬度分别为341.8、375.2、394.4、405.1、436.8MPa。同时,放电孔的孔径和烧结盘的尺寸也逐渐增加。在微弧氧化过程中,SiC被氧化成SiO_2,基体中的Al被氧化成α-Al_2O_3和γ-Al_2O_3,膜层中的相组成主要有α-Al_2O_3、γ-Al_2O_3、SiO_2和莫来石。同时,随着SiC微粉浓度的增加,膜层中的C、Si元素含量增加,Al元素和O元素的含量降低。膜层的腐蚀速率分别为1.11×10~(-1)、3.598×10~(-2)、5.223×10~(-2)、6.762×10~(-2)、1.323×10~(-1) mm/a,呈现出先减小后增加的趋势,耐蚀性先增加后降低。结论 SiC微粉的添加增加了膜层的厚度,改变了膜层的表面形貌,同时提高了微弧氧化膜层的显微硬度、耐蚀性等性能。  相似文献   

4.
在不同电流密度下制备了铈掺杂ZL108合金的微弧氧化膜,研究了电流密度对铈掺杂铝合金微弧氧化膜性能的影响。利用扫描电镜观察微弧氧化膜的表面形貌,采用能谱仪分析膜层元素,利用极化曲线评定耐蚀性,并对微弧氧化膜的厚度、表面硬度进行了测定。结果表明,随着电流密度的增加,氧化电压、膜层厚度均增加,而硬度先上升后降低;微弧氧化膜表面微孔数量及尺寸不断增加,最后出现块状凸起并有裂纹产生。Ce元素在微弧氧化膜表面的分布随电流密度增加而不断均匀。当电流密度为10 A/dm~2时Ce含量最高,此时微弧氧化膜耐蚀性最好。  相似文献   

5.
为了研究ZL108铝合金微弧氧化膜的Na2Mo O4改性机理,在添加5种不同浓度的Na2MoO4溶液中对其进行微弧氧化处理。利用扫描电镜(SEM)观察微弧氧化膜表面形貌,用能谱仪(EDS)分析截面Mo、O元素含量,用XPS测定Mo、O元素的价态,用X射线衍射仪(XRD)分析相组成,采用极化曲线评定耐蚀性。结果表明,微弧氧化电压随着Na2MoO4浓度的增加而下降。微弧放电区温度高于1823.84 K时,Mo O2-4开始转变形成MoO2,抑制了微弧氧化膜表面多孔层的形成,提高了膜层的致密性、厚度和耐蚀性。浓度的改变对相组成影响较小。  相似文献   

6.
在含有纳米TiO_2的电解液中对铝合金进行微弧氧化处理,用以研究掺杂纳米TiO_2对铝合金微弧氧化成膜机理及性能的影响。利用扫描电镜(SEM)观察微弧氧化膜形貌,能谱仪(EDS)分析膜层Ti、Al、O等元素含量,X射线衍射仪(XRD)分析相组成,测定膜厚、硬度和氧化液中TiO_2表面电荷,建立了掺杂改性模型。结果表明,加入纳米TiO_2后,氧化初期电压随TiO_2添加量增加逐渐升高、5min后电压逐渐降低;氧化膜表面孔洞数量和尺寸减小,成膜效率、膜层致密度和表面疏松层硬度提高。纳米TiO_2在氧化膜表面均匀分布,截面不均匀分布。氧化膜主要由γ-Al_2O_3、Mullite和少量Si组成。  相似文献   

7.
目的研究CuSO_4浓度和微弧氧化工艺参数(电压、氧化时间)对TC4钛合金微弧氧化膜颜色及性能的影响。方法在磷酸钠电解液中,对TC4钛合金进行微弧氧化处理,并添加CuSO_4获得不同颜色的陶瓷膜,对氧化膜的宏观形貌、微观形貌、物相结构以及硬度进行分析。结果添加CuSO_4能使陶瓷膜颜色变深,随着CuSO_4浓度升高,膜层由灰色逐渐变为红褐色。当CuSO_4质量浓度为0.5 g/L时,氧化膜表面均匀致密,显微硬度最高(627.1HV);当CuSO_4质量浓度为1.5 g/L时,氧化膜显微硬度最低(382.8HV)。随着电压升高,膜层颜色加深,色泽更均匀,但表面硬度下降。在400 V条件下制备的氧化膜硬度最低,但是色泽最均匀。随着氧化时间的延长,氧化膜厚度增加,颜色加深,色泽更为均匀,但是当氧化时间超过15 min后,氧化膜颜色变浅。结论 CuSO_4对微弧氧化膜的显色作用明显,其浓度及微弧氧化工艺参数(电压、氧化时间)均对涂层性能、色泽、致密性、厚度及相组成具有很大的影响。  相似文献   

8.
针对镁合金耐磨性偏低的问题,利用微弧氧化技术在AZ31镁合金表面制备陶瓷涂层,探究微弧氧化电解液中添加La(NO_3)_3与Ce(NO_3)_3比例对AZ31镁合金微弧氧化(MAO)涂层显微硬度以及摩擦因数的影响。结果表明:AZ31镁合金微弧氧化涂层主要由MgO、MgSiO_3和MgSiO_4等相组成,未检测到原始添加的La和Ce等氧化物相。La(NO_3)_3与Ce(NO_3)_3添加能够降低镁合金涂层表面的微孔尺寸。随着电解液中La(NO_3)_3与Ce(NO_3)_3的添加比例增加,显微硬度呈现出先增加后降低的趋势。与未添加稀土复合盐相比,电解液添加稀土盐后微弧氧化涂层的显微硬度有所提高。添加La(NO_3)_3与Ce(NO_3)_3不同比例,涂层表面粗糙度在6.1~7.6μm范围内变化,相比未添加稀土盐获得涂层的粗糙度降低约2~3μm。电解液中添加La(NO_3)_3与Ce(NO_3)_3复合盐后,所获得的微弧氧化涂层的摩擦因数降低。  相似文献   

9.
研究电解液中La(NO_3)_3含量对7075铝合金微弧氧化膜层性能的影响。利用XRD、SEM、共聚焦显微镜和摩擦试验机分析膜层的相组成、表面形貌及耐磨系数等。结果表明:微弧氧化膜层主要由α-Al_2O_3和γ-Al_2O_3相构成。随着La(NO_3)_3含量增加,γ-Al_2O_3相呈增加趋势。电解液中添加La(NO_3)_3后膜层覆盖均匀;当w[La(NO_3)_3]3‰时,膜层具有"火山口"微孔特征;当w[La(NO_3)_3] 3. 5‰时,膜层出现大量数微米以上蚀坑;随着La(NO_3)_3含量增加,膜层显微硬度先增加后减小,表面粗糙度在5. 4μm~7. 5μm间变化,膜层的摩擦因数降低。  相似文献   

10.
为了研究添加Al2O3微粉对AZ31A镁合金微弧氧化膜特性影响,在不同浓度Al2O3微粉电解液中对其进行了微弧氧化处理。利用扫描电镜(SEM)观察微弧氧化膜形貌,能谱仪(EDS)分析了膜层表面Ca、Mg、O、Al元素分布,X射线衍射仪(XRD)分析了相组成,测定了膜厚、硬度和氧化液中Al2O3表面电荷,讨论了掺杂改性机理。结果表明,加入Al2O3微粉后,氧化电压随Al2O3添加量增加先增加后降低;氧化膜表面孔洞数量和尺寸减小,膜层表面Ca元素分布逐渐减少,成膜效率降低,膜层致密度和表面疏松层硬度提高,氧化膜主要由MgO和MgO4等相组成。  相似文献   

11.
采用了Na2Si O3体系电解液对7E04铝合金进行微弧氧化处理。研究了不同添加量的Si C对其性能的影响。通过扫描电镜观察了微弧氧化膜层的微观形貌。采用X射线衍射仪检测了膜层的相组成。利用极化曲线对膜层的耐腐蚀性进行评价。通过EDS分析了膜层上元素的分布。分析了膜层的厚度、硬度以及氧化电压的变化规律。结果表明,Si C能在一定程度上提高7E04铝合金微弧氧化膜层的性能。  相似文献   

12.
采用Na3PO4基础电解液,添加不同量的纳米SiO2,对铸造铝铜合金进行微弧氧化处理,分析了纳米SiO2用量对微弧氧化膜层厚度、硬度、物相组成、微观表面形貌及耐磨性能的影响。分析表明:纳米SiO2参与了微弧氧化反应过程,并进入微弧氧化膜层,当其添加量为3 g/L时,膜层的耐磨性能最佳。  相似文献   

13.
钒掺杂对铝合金微弧氧化层结构和性能影响   总被引:1,自引:0,他引:1  
通过在电解液中添加NH4VO3制备了钒掺杂铝合金微弧氧化层,研究了不同添加浓度对铝合金微弧氧化层结构和性能的影响。利用扫描电镜(SEM)观察微弧氧化层表面形貌,能谱(EDS)仪分析了膜层V、O元素含量,XPS测定V、O元素的价态,X射线衍射(XRD)仪分析了相组成,极化曲线评定了耐蚀性。结果表明,微弧放电区温度高于1714.38K时?3VO开始转变形成V2O5,低熔点的V2O5在电弧作用下优先熔化而抑制了微弧氧化层表面多孔层的形成。钒掺杂对微弧氧化层相组成影响较小,有利于提高膜层的厚度和耐蚀性。  相似文献   

14.
采用磁控溅射-微弧氧化的方法在镁合金表面制备了Al_2O_3膜层,随后采用X射线衍射分析(XRD)、扫描电镜(SEM)、能谱分析(EDX)等方法对微弧氧化膜层的相结构、截面形貌及膜层中的元素分布进行了分析,采用摩擦磨损和电化学腐蚀方法对膜层的耐磨耐腐蚀特性进行了测试。结果表明,通过先进行磁控溅射后进行微弧氧化的方式可以在镁合金表面获得Al_2O_3微弧氧化膜层。通过改变反应终止电压可控制微弧氧化膜层的厚度。当反应终止电压不高于510 V,膜层主要由铝和Al_2O_3组成。而当微弧氧化反应终止电压超过600 V后,铝膜层完全参与反应转变为微弧氧化膜层,膜层主要由Al_2O_3和MgO组成。Al_2O_3微弧氧化膜层的形成有助于提高镁合金表面的耐磨耐腐蚀性能。  相似文献   

15.
在不同电流密度下制备了ZL108 Na2WO4改性微弧氧化膜,研究了电流密度对Na2WO4改性微弧氧化膜特性的影响。利用扫描电镜(SEM)观察氧化膜表面形貌,能谱仪(EDS)、X射线衍射仪(XRD)以及X射线光电子能谱(XPS)分别测试了氧化膜截面元素分布、相组成以及W的化合价,极化曲线测试了耐蚀性。结果表明,随电流密度增大,微弧氧化膜由致密变为多孔,微孔数量增加、尺寸变大,膜层增厚。膜层中W、O含量增加,Al含量下降。微弧氧化膜由γ-Al2O3、Al和Si 3个相组成,W元素在膜中主要以WO3形式存在。微弧氧化膜的耐蚀性随电流密度增加而提高。  相似文献   

16.
目的 提高6061铝合金微弧氧化膜层的性能.方法 在电解液中加入5 mL/L的植酸,对6061铝合金表面生成的微弧氧化膜层进行改性.记录微弧氧化过程中的电压-时间曲线,采用SEM、EDS、XRD、电化学工作站、马弗炉等仪器设备,研究了植酸的添加对微弧氧化膜层微观结构、元素组成、相组成、耐蚀性、抗热震性等特性的影响.结果 添加植酸后,微弧氧化电压从526 V提高到538 V,微弧氧化放电更加均匀,微弧氧化膜层的生长速率增加,膜层厚度从9.3μm增加到13.6μm.放电微孔孔径减小,数量增多,膜层致密均匀,膜层结合力从3.2 N提高到3.9 N,显微硬度增加了39.2HV.植酸中的磷酸根基团和羟基可与基体电离出的Al3+结合生成植酸铝,使膜层中的C、P元素比例提高,Al元素比例降低.微弧氧化过程中,基体中的Al转变成γ-Al2O3和α-Al2O3,添加植酸后,γ-Al2O3和α-Al2O3的衍射峰强度提高.膜层的腐蚀速率从1.085×10-2 mm/a降低到1.565×10-3 mm/a,其耐蚀性能提高,同时具有良好的抗热震性能.结论 植酸的添加优化了微弧氧化膜层的结构,提高了膜层的厚度、显微硬度和膜层结合力,同时改善了膜层的耐蚀性能和抗热震性能.  相似文献   

17.
为了改善镁合金的微弧氧化膜层的性能,利用两步法在AM60压铸镁合金表面制备了ZrO_2微弧氧化膜层.研究了膜层在恒电压控制方式下的生长规律,测量了膜层在w(NaCl)=3.5%溶液中的极化曲线,分析了膜层的物相组成.结果表明:在400 V恒压微弧氧化处理时,微弧氧化膜层的平均生长速度最高可达3.5 μm/min:试样在w(NaCl)=3.5%溶液中的极化曲线显示,镁合金经过两步法在锆盐溶液中微弧氧化后,其腐蚀电位正移,腐蚀电流降低,腐蚀速度大幅降低,其耐蚀性得到了大幅度提高.两步法制备微弧氧化膜层主要由ZrO_2、ZrP_2、Mg_3(PO_4)_2、MgF_2相组成,在溶液中添加的Zr元素可以通过微弧氧化处理时的复杂反应进入膜层中,膜层表现出的优异耐蚀性主要源于膜层中存在ZrO_2陶瓷.  相似文献   

18.
通过向Na2Si O3-Na Al O2复合电解液体系中添加纳米Si C,经过微弧氧化处理后在AZ91D镁合金表面制备含纳米SiC的复合陶瓷层。利用SEM、膜层测厚仪、XRD、EDS和维氏硬度计分别研究膜层的微观形貌、厚度、相结构、元素组成及硬度。采用摩擦磨损试验机对镁合金基体和膜层的干滑动磨损行为进行研究,运用动电位极化曲线试验和交流阻抗法测量镁合金基体和膜层在3.5%Na Cl溶液中的耐蚀性能。结果表明:向电解液中添加纳米Si C后,微弧氧化的起弧电压和终止电压均下降。经纳米SiC复合处理后,微弧氧化膜层的孔径减小,致密性提高;与未添加纳米Si C的膜层相比,其厚度和硬度都得到提升,耐磨性与耐蚀性均增强。  相似文献   

19.
CeO_2对2A12铝合金微弧氧化膜层组织和性能的影响   总被引:1,自引:0,他引:1  
在硅酸盐电解液中添加稀土二氧化铈(Ce O2)颗粒,采用恒流模式在2A12铝合金表面制备陶瓷膜层。通过扫描电子显微镜、X射线衍射仪、粗糙度仪、硬度计、极化曲线等手段研究Ce O2颗粒对2A12铝合金微弧氧化陶瓷膜层微观形貌、组织、粗糙度、硬度和耐蚀性的影响。实验结果表明:添加Ce O2使膜层表面微孔直径减小,膜层粗糙度下降,厚度增加。Ce O2颗粒进入膜层中大部分以Ce O2化合物沉积形式存在,微量Ce O2参与反应以Ce O、Ce Al11O8化合物形式存在。Ce O2颗粒具有促进γ-Al2O3向α-Al2O3转变的作用,从而提高了膜层的硬度。当Ce O2浓度为3~4 g/L时膜层耐蚀性能较好。  相似文献   

20.
在磷酸盐体系中采用恒压微弧氧化工艺对Ti6Al4V(TC4)合金进行微弧氧化,研究了不同氧化时间对微弧氧化膜层的表面形貌、硬度、粗糙度以及物相生成的影响,并对不同氧化时间的膜层耐腐蚀性能进行了测试。结果表明:随着微弧氧化时间的延长,氧化膜表面微孔径增大,膜层厚度与表面硬度值先增加后又降低,膜层由金红石、锐钛矿及钙磷化合物组成,且主晶相为钙磷化合物,金红石及钙磷化合物含量均随微弧氧化时间的延长而增加;微弧氧化膜层表面Ca/P摩尔比值为1.56,接近人体羟基磷灰石比值,O/Ti原子比值为2.0,膜层表面主要组成为TiO2;微弧氧化膜层腐蚀电位逐渐减小,腐蚀电流逐渐增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号