首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了轧制工艺对镁合金微观组织和力学性能的影响。结果表明,随着轧制道次的增加,镁合金组织中孪晶组织越来越多。随着轧制温度的提高,镁合金变形能力增加,但晶粒长大,且氧化程度加剧。镁合金抗拉强度、屈服强度和伸长率随轧制道次增加而升高。随轧制温度增加,镁合金抗拉强度和屈服强度降低,伸长率升高。  相似文献   

2.
通过OM、XRD、室温拉伸试验研究了轧制工艺参数对AE42稀土镁合金组织和性能的影响。结果表明:铸态AE42合金的组织为白色的α-Mg和形貌为颗粒状、针状、块状、短棒状的黑色稀土相Al11RE3、Al2RE(RE:Ce、La),其室温抗拉强度、屈服强度和伸长率分别为117.5 MPa、53.0 MPa和10.7%。AE42镁合金适宜的轧制工艺参数为:轧制变形量75%、轧制8道次、轧制温度450℃。此工艺参数下轧制的AE42镁合金抗拉强度、屈服强度和伸长率分别为236.2MPa、140.1 MPa和16.0%,分别比铸态提高了101.0%、164.3%和49.5%。  相似文献   

3.
等径角轧制AZ31镁合金板材的组织与性能   总被引:15,自引:1,他引:15  
采用等径角轧制工艺制备了AZ31镁合金板材.结果表明:经等径角轧制后的板材,晶粒取向由等径角轧制前的(0002)基面取向演化为基面与非基面共存的取向.与等径角轧制前的板材相比,板材晶粒尺寸略有长大并有孪晶出现,但强度却明显提高,而断裂延伸率变化不大,尤其是1个道次轧制的板材其抗拉强度由等径角轧制前的240增大到275 MPa,屈服强度由193.8增大到239.2 MPa;随着等径角轧制道次的增加,板材的强度逐渐降低,至第4个道次其抗拉强度仅为250 MPa,屈服强度为207.3 MPa.  相似文献   

4.
对不同轧制温度、道次压下量以及轧制路径等工艺条件下所制备的AZ31镁合金板材的组织和性能进行了研究。结果表明,当温度由623K升到723K时,晶粒发生长大,孪晶消失,板材的抗拉强度由275MPa降到250MPa,伸长率则由14.5%增加到18%;当道次压下量从5%增加到20%时,晶粒逐渐得到细化,板材的抗拉强度由道次压下量为5%时的265MPa增加到20%时的300MPa,伸长率则由18%降到15%;轧制路径的改变,使不同板材中孪晶的数量产生改变,路径A中的孪晶较多,伸长率较低,强度较高,路径D中的孪晶较少,伸长率较高,强度较低。  相似文献   

5.
研究了板坯加热温度、退火温度以及冷轧道次加工率对AZ31变形镁合金轧制能力的影响.结果表明,当加热温度为350℃,轧制速度为0.4m/s时,AZ31镁合金板材的热轧道次极限加工率可以达到34.62%(无裂纹)和59.23%(无表面裂纹);将热轧态板材分别在250℃~350℃温度,退火40min后,板材显微组织中晶粒大小均匀,维持在5μm~6μm水平;板材具有良好的综合力学性能,其抗拉强度为:230Pa~240MPa,屈服强度为:135MPa~175MPa,延伸率为:12%~15%.当采用350℃×40min退火后,板材在冷轧道次加工率为5%~10%时,总加工率可以达到40%以上.  相似文献   

6.
异步轧制对AZ31镁合金板材组织和性能的影响   总被引:4,自引:0,他引:4  
对不同轧制温度、道次压下量以及轧制路径等工艺条件下所制备的AZ31镁合金板材的组织和性能进行了研究。结果表明.当温度由623K升到723K时,晶粒发生长大,孪晶消失,板材的抗拉强度由275MPa降到250MPa,伸长率则由14.5%增加到18%;当道次压下量从5%增加到20%时,晶粒逐渐得到细化,板材的抗拉强度由道次压下量为5%时的265MPa增加到20%时的300MPa,伸长率则由18%降到15%;轧制路径的改变,使不同板材中孪晶的数量产生改变,路径A中的孪晶较多,伸长率较低,强度较高,路径D中的孪晶较少,伸长率较高.强度较低。  相似文献   

7.
轧制工艺对AZ31B镁合金薄板组织与性能的影响   总被引:2,自引:1,他引:1  
研究了轧制温度和轧制速度对AZ31B镁合金薄板微观组织演变和力学性能的影响。结果表明,轧辊加热有利于镁合金薄板成型;AZ31B镁合金在低温或低速轧制时薄板纵向组织为大量的切变带,切变带区域包含大量孪晶组织,横向组织为含极少量孪晶的等轴晶组织;在轧制温度为400℃和轧制速度为16m/min轧制时,由于动态再结晶,横纵截面组织均为等轴晶。AZ31镁合金薄板的最佳轧制制度为轧辊温度为70℃、轧制温度为400℃、轧制速度为6m/min,此工艺轧制的薄板横向抗拉强度、屈服强度和伸长率分别为350MPa、300MPa和12%,纵向为345MPa、290MPa和11.2%,纵向与横向性能差别明显减小。  相似文献   

8.
采用等通道转角挤压(ECAP)工艺以Bc路径在623K温度下对Mg-1.5Mn-0.3Ce镁合金进行变形,观察显微组织与织构,测试了力学性能。显微组织分析表明,镁合金经ECAP变形晶粒尺寸明显得到细化,经6道次ECAP变形后晶粒尺寸由原轧制态的约26.1μm细化至约1.2μm,且细小的第二相粒子Mg12Ce弥散分布于晶内及晶界处;同时经ECAP变形后,原始轧制织构随变形道次的增加不断减小,并开始转变为ECAP织构,织构强度不断增强;力学性能结果表明,由于晶粒细化作用大于织构软化作用,前3道次ECAP变形镁合金强度随道次的增加不断提高,与Hall?Petch关系相符,在第3道次时其抗拉强度和屈服强度达到最大值,分别为272.2和263.7MPa;在4道次之后形成较强的非基面织构,镁合金强度下降,与Hall?Petch呈相悖关系。断口分析表明,轧制态与ECAP变形镁合金的断裂方式都是沿晶断裂,由于6道次变形镁合金晶粒细化,存在更多的韧窝并获得16.8%最大室温伸长率。  相似文献   

9.
为了改善镁合金单道次大压下量轧制变形能力,提高轧制效率,采用扫描电镜和拉伸试验机等手段研究了不同变形量下单衬板轧制和双衬板轧制Mg-6.42Al-3.22Sn镁合金的显微组织和力学性能变化。结果表明,单衬板轧制镁合金试样的下表面裂纹状态优于上表面,轧制温度为400℃时镁合金试样上下表面未见裂纹,而双衬板轧制镁合金在轧制温度为350℃及以上时都未见明显裂纹。单衬板轧制和双衬板轧制镁合金试样的平均晶粒尺寸和第二相颗粒尺寸都随着变形量增加而减小。在相同变形量下,单衬板轧制和双衬板轧制镁合金的屈服强度和抗拉强度相当,且双衬板轧制镁合金的断后伸长率和应变硬化指数高于后者,更有利于后续加工变形,这主要与双衬板轧制有助于将镁合金试样上下表面的剪切应变转变为压应变,更有利于抑制裂纹扩展和具有更高的抵抗均匀塑性变形的能力有关。  相似文献   

10.
分析了压痕—压平复合形变工艺特点及作用,定义了相关工艺参数,研制了AZ31镁合金板材压痕—压平复合形变模具装置,并进行了实验研究。分析了坯料温度、压下率等工艺参数对镁合金板材微观组织和力学性能的影响规律。结果表明:坯料温度为275℃时,压下率为29%,模具温度为150℃时,经过压痕—压平复合形变后,镁合金板材的微观组织和力学性能得到明显提高,其平均晶粒尺寸为7.84μm,屈服强度为212 MPa,抗拉强度为298 MPa,伸长率为17.2%,显微硬度为91.99 HV。复合形变后的镁合金性能与平棍轧制工艺相比,晶粒尺寸细化了23%,屈服强度提高了5%,抗拉强度提高了15%,伸长率提高了4%,显微硬度提高了12%。  相似文献   

11.
AZ31镁合金板材双向循环弯曲的孪晶组织及织构   总被引:1,自引:0,他引:1  
采用等温双向循环弯曲工艺(bidirectional cyclic bending technology,BCBT)改善了AZ31镁合金板材的微观组织、织构和力学性能。循环弯曲变形能够产生压缩变形与拉伸变形的交替变化,使镁合金材料发生压缩变形→孪晶组织形成→发生动态再结晶→孪晶消失→晶粒细化的组织演变过程,形成分布均匀的细小的晶粒组织,改善了镁合金材料性能。AZ31镁合金板材在变形温度为483 K时经过3个道次的等温双向循环弯曲变形后,基面织构得到明显弱化,织构强度由原始9.59降低到变形后3.54,平均晶粒尺寸为12.2μm。在变形温度443 K,经过1个道次变形后,AZ31镁合金板材的抗拉强度为325 MPa,屈服强度为225 MPa。与原始坯料力能参数相比,抗拉强度提高了19%,屈服强度提高了28%。当变形温度483 K循环变形3道次时,材料的伸长率为17.1%,比原始材料提高了42%。  相似文献   

12.
在对等通道角挤压中模具通道夹角、挤压路线和挤压温度研究的基础上,确定了实验中的理想工艺。研究发现,AZ91镁合金经过一个道次的等通道角挤压后,材料中就有大量的超细晶粒出现。随着道次数增加,超细晶粒比例逐渐增多。AZ91镁合金经过225℃四道次+180℃二道次的挤压后,屈服强度和抗拉强度分别达到290MPa和417MPa,伸长率达到8.45%。  相似文献   

13.
研究Mg-1Si铸造镁合金在挤压温度为623 K和挤压路径为BC条件下,等通道转角挤压(ECAP)不同道次变形对其组织及室温力学性能的影响。结果表明,随着挤压道次增加,α-Mg基体、Mg2Si相均得到细化且趋于均匀分布;铸态试样屈服强度为55 N/mm2,抗拉强度为93 N/mm2,伸长率为6%;1道次挤压试样的屈服强度提高67%,抗拉强度提高86%,伸长率提高95%;2道次挤压试样的抗拉强度和屈服强度与1道次相比有所降低,但伸长率进一步提高;3、4道次后试样的组织和性能相差不大;随着挤压道次增加,合金的伸长率逐渐提高,塑性提高。  相似文献   

14.
在对等通道角挤压中模具通道夹角、挤压路线和挤压温度研究的基础上,确定了实验中的理想工艺。研究发现,AZ91镁合金经过一个道次的等通道角挤压后,材料中就有大量的超细晶粒出现。随着道次数增加.超细晶粒比例逐渐增多。AZ91镁合金经过225℃四道次+180℃二道次的挤压后,屈服强度和抗拉强度分别达到290MPa和417MPa,伸长率达到8.45%。  相似文献   

15.
试验研究了异步轧制工艺参数对Mg_(98.5)Zn_(0.5)Y_1合金力学性能的影响,探讨了异步轧制工艺参数对合金晶粒细化及其强化机制的影响。结果表明:随着轧制道次的增加,材料的屈服强度和抗拉强度增加,最高可达到325 MPa;异步轧制产生的剪切应变能有效促进压缩孪晶和晶粒内部及晶粒间的相互作用,产生动态再结晶,从而导致大晶粒的内部转变为许多小亚晶,达到细化晶粒,提高镁合金力学性能的目的。  相似文献   

16.
本文研究了不同轧制变形量和轧制速度对AZ31镁合金板材微观组织和力学性能的影响。轧制变形可显著细化AZ31镁合金板材的晶粒尺寸并提高其综合力学性能。当轧制速度为5m/min,轧制变形量为50%时,板材平均晶粒尺寸最细可达到9μm,其抗拉强度、屈服强度和延伸率分别提高到280MPa、180MPa和30%以上,同时探讨了AZ31镁合金屈服强度与晶粒大小之间的关系。在大量AZ31镁合金轧制相关文献和本文一系列实验研究的基础上,对比分析了不同轧制工艺对AZ31镁合金综合力学性能的影响。研究表明,本文所采用轧制工艺可显著提高AZ31镁合金板材的综合力学性能,同时降低板材轧向和横向的各向异性。  相似文献   

17.
向承翔 《热加工工艺》2015,(6):177-179,182
以AZ31B镁合金材料为原料制备了汽车板样品,研究了退火工艺对其力学性能的影响。结果表明:经400℃退火,保温4 h后的力学性能最佳,横向屈服强度和纵向屈服强度分别为200 MPa和238 MPa,其横向抗拉强度与纵向抗拉强度分别为328 MPa和368 MPa,对应的其横向伸长率和纵向伸长率分别为18.95%和19.65%。合适的退火温度和退火保温时间可以消除轧制过程中的形变孪晶,进而细化晶粒,提高退火后镁合金板的力学性能。  相似文献   

18.
研究了不同轧制变形量对AZ80镁合金组织及性能的影响。结果表明,AZ80镁合金的抗拉强度随轧制变形量的增加有所提高,而伸长率则随着变形量的增加先增加后减小。变形量为25%、50%、80%的AZ80镁合金其屈服强度分别为200、146、205 MPa;抗拉强度分别为245.52、249.08、279.49 MPa;伸长率分别为15.8%、24.2%、19.1%;其晶粒平均尺寸分别为30、10、3μm。  相似文献   

19.
通过往复挤压(CEC)变形来细化AM60B镁合金的组织。结构表明:随着CEC道次的增加,组织得到明显细化。当材料达到临界最小晶粒尺寸时,进一步挤压变形也很难使组织得到明显的细化。细小的组织具有优异的力学性能,合金的硬度、屈服强度、抗拉强度和断后伸长率分别由铸态的62.3、64MPa、201MPa和11%上升N-道次变形后的72.2、183.7MPa、286.3MPa和14.0%。但是再进一步挤压变形材料的力学性能增加幅度不明显,经四道次挤压变形后其硬度、屈服强度、抗拉强度和断后伸长率分别为73.5、196MPa、297MPa和16%  相似文献   

20.
对AZ31镁合金铸轧板材进行了不同初轧温度的多道次不同路径轧制试验。通过显微组织观察、室温拉伸试验研究了不同初轧温度和轧制路径对AZ31镁合金板材的组织和性能的影响。结果表明:在300~450℃,随着初轧温度的升高,AZ31镁合金板材试样平均晶粒尺寸逐渐增大,初轧温度达到450℃时,晶粒发生明显长大。相同初轧温度下,轧制方向交替变化轧制的AZ31镁合金板材试样比单向轧制试样晶粒更为细小。随着初轧温度的升高,试样的抗拉强度和屈服强度逐渐降低,伸长率先降低后升高。采用轧制方向交替变化轧制的AZ31镁合金板材具有更优的力学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号