首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
以横向进给磨削正交试验为基础,研究了磨削深度a_p、工件进给速度vw和横向重磨量C_r对40Cr钢磨削淬硬层深度的影响。结果表明:磨削深度a_p和工件进给速度v_w是影响磨削淬硬层深度的高度显著因素,其显著性大小依次为:磨削深度a_p工件进给速度v_w横向重磨量C_r。随着磨削深度的增加或工件进给速度的减小,磨削淬硬层深度相应增大。从提高磨削淬硬层深度及其均匀性的角度出发,本试验的最优磨削淬硬工艺参数组合:磨削深度ap为0.4 mm,工件进给速度v为0.2 m/min,横向重磨量C_r为1 mm。  相似文献   

2.
在平面磨床上采用双道磨削方式对40Cr钢进行了磨削淬硬试验,研究了横向上淬硬层组织形貌及显微硬度分布规律。结果表明,双道磨削时,横向上越靠近工件中部地区,淬硬层厚度越薄,磨削区可以分成完全淬硬区、过渡区、回火区和重磨区(无重磨时存在未淬区)。横向上淬硬层中间部分存在显微硬度较低的“软化带”,且随着磨削深度的增加或工件进给速度的减小,软化带长度增加;当表面硬化层没有未淬区域时,随着砂轮重叠量的增加,软化带长度也增加。  相似文献   

3.
对退火态40Cr钢进行双道搭接磨削淬硬试验,并结合单道磨削淬硬试验和磨削淬硬表面温度仿真,研究了搭接量对软化区硬度分布、形状特征和组织形貌的影响。结果表明,第一道磨削淬硬表面存在回火软化现象。搭接量C_r=0时,软化区近似梯形,C_r≥1 mm时,软化区近似平行四边形。随着搭接量的增加,软化区宽度相应增大;其组织也由回火屈氏体、回火索氏体、铁素体、珠光体和马氏体转变为回火屈氏体、回火索氏体和马氏体。从提高磨削淬硬面积和磨削淬硬加工效率的角度出发,宜采用C_r=1 mm的搭接量。  相似文献   

4.
40Cr钢磨削淬硬层残余应力的试验研究   总被引:1,自引:0,他引:1  
以平面磨削淬硬加工试验为基础,利用X射线应力测定仪对40Cr钢磨削淬硬层残余应力进行了研究.结果表明,磨削淬硬层表面均存在残余压应力,次表层出现最大残余压应力.随着磨削速度的提高、磨削深度的增加或工件进给速度的降低,磨削淬硬层表面残余压应力值相应减小,但最大残余压应力和应力作用深度相应增加.采用单程干式磨削淬硬可增加淬硬层的最大残余压应力及应力作用深度.  相似文献   

5.
HIPSN陶瓷高效精密磨削工艺优化试验研究   总被引:3,自引:3,他引:0  
目的针对HIPSN(热等静压氮化硅)陶瓷精密加工效率低、成本高、难度大的问题,对HIPSN陶瓷高效精密磨削加工工艺进行优化。方法利用高精度成形磨床对HIPSN陶瓷进行试验,分析砂轮线速度、磨削深度、工件进给速度等工艺参数对磨削后表面质量的影响规律。结果磨削深度由0.005 mm增加到0.050 mm,表面粗糙度值由0.2773μm减小到0.2198μm,并趋于稳定;工件进给速度由1000 mm/min增加到15 000 mm/min,表面粗糙度值由0.2454μm减小到0.2256μm,之后增大到0.2560μm,并趋于稳定;砂轮线速度由20 m/s增加到50 m/s,表面粗糙度值由0.2593μm减小到0.2296μm。随着工件进给速度的增大,表面波纹度平均间距Sw由0 mm直线增加到5.90 mm;随着砂轮线速度的提高,平均间距Sw由2.33 mm直线减小到0.68 mm。优化工艺参数组合:砂轮线速度50 m/s,磨削深度0.030 mm,工件进给速度3000 mm/min。结论表面粗糙度值与磨削深度和砂轮线速度呈负相关,随着工件进给速度的增大,表面粗糙度值先减小后增大,之后趋于稳定。减小工件进给速度、提高砂轮线速度有助于改善表面波纹度。  相似文献   

6.
采用逆磨+顺磨的双程平面磨削方式对球墨铸铁QT400进行磨削淬硬试验,研究了磨削深度ap和试样进给速度vw对淬硬层及其均匀性的影响。结果表明,磨削后试样表层存在熔化、完全相变淬硬和未完全相变淬硬等3种情况,其中,熔化层组织为二次渗碳体、残留奥氏体和碳化物,完全相变淬硬层组织为针状马氏体、残留奥氏体和球状石墨,未完全淬硬层组织为针状马氏体、铁素体、残留奥氏体和球状石墨。显微硬度分布曲线中高硬度区的平均硬度值在850~950 HV0.2之间,与基体(190~230 HV0.2)相比,显微硬度提高近3倍。随着磨削深度ap的增大或试样进给速度vw的减小,试样表层呈现“完全未淬硬→未完全淬硬→完全淬硬→熔化”的变化规律,显微硬度分布曲线中高硬度区的范围也变宽,淬硬层的深度也增大且均匀性良好。  相似文献   

7.
在氧化锆陶瓷磨削中为获得较高质量表面,采用单因素试验研究磨削深度、砂轮线速度、工件进给速度对氧化锆陶瓷精密磨削表面质量的影响规律及材料去除机理,通过超景深三维显微镜以及扫描电子显微镜,观察氧化锆陶瓷试件磨削后的表面形貌,最后用正交试验法进行优选并验证。结果表明:磨削表面的粗糙度随磨削深度、工件进给速度增大而增大,随砂轮线速度增大先减小、后增大。在磨削深度5 μm、砂轮线速度40 m/s、工件进给速度1 000 mm/min的优化组合条件下,磨削3组氧化锆陶瓷的平均表面粗糙度Ra为0.388 9 、0.417 0和0.403 7 μm。   相似文献   

8.
40Cr钢外圆磨削表面淬硬层的组织   总被引:1,自引:0,他引:1  
研究了外圆磨削淬硬试验中磨削用量对表面淬硬层组织的影响.结果表明,磨削深度ap=0.2 mm时,外圆磨削淬硬件表层局部存在未淬硬区;磨削深度ap>0.2 mm时,由于砂轮切入和切出时磨削热的作用,表面淬硬层局部存在回火区.淬硬区和回火区具有相同的显微硬度分布规律,但各区的最高硬度值随着该区组织的不同而异.在实际应用中,通过合理组合磨削深度ap和进给速度vw,可获得满意的外圆磨削表面淬硬层.  相似文献   

9.
本文使用SiC砂轮和金刚石砂轮对颗粒尺寸大、体积分数高的SiCp/Al复合材料进行了平面磨削实验,研究了磨削深度和工件进给速度对磨削力的影响,并利用扫描电镜对已加工表面形貌进行了研究.结果表明:使用SiC砂轮加工时,磨削力随磨削深度的增加而增大;工件进给速度较低时,磨削力随工件进给速度增加而减小,当工件进给速度超过12...  相似文献   

10.
轴承套圈端面形位公差直接影响轴承的精度,为提高氮化硅套圈的加工精度,对套圈端面的宽度变动量进行研究。在立式圆台磨削方式下,采用正交试验,确定各因素对套圈宽度变动量影响的主次顺序,优化获得套圈端面的最佳加工工艺参数;后通过单因素试验,探究单一磨削参数对宽度变动量的影响规律。主轴进给速度对氮化硅套圈宽度变动量影响最为显著,砂轮转速次之,工件转速影响最小;氮化硅套圈宽度变动量随进给速度的增大而增大,随工件转速和砂轮转速的增大先减小后增大;降低进给速度,有利于减小裂纹及凹坑缺陷的产生,提高套圈端面表面质量。在最佳加工工艺参数砂轮转速为800 r/min、进给速度为5μm/min、工件转速为55 r/min下,可获得氮化硅套圈宽度变动量≤6μm,实现氮化硅轴承套圈高效精密加工。  相似文献   

11.
刘克铭  马壮  张连勇  刘波 《热加工工艺》2012,41(14):215-217
在MM7132平面磨床上对42CrMo钢进行了磨削淬火试验,研究了冷却方式及试样尺寸对淬硬层厚度及淬硬区组织的影响。结果表明:在湿磨条件下,随磨削深度的增加,淬硬层厚度总体呈增加趋势,淬硬层厚度均达到1.5 mm。磨削深度为0.2 mm、试件高度为100 mm干磨时,淬硬层厚度为0.75 mm,淬硬层显微硬度最高为771.8 HV;试件高度为150 mm时淬硬层厚度为0.5 mm,淬硬层显微硬度最高为605.4 HV。干磨时马氏体组织更细小。  相似文献   

12.
冲击力、材料硬度的变化以及超声振动的施加方式是磨削力降低的主要原因。在普通磨削的基础上加入二维超声振动,分析磨削力的影响机制,在相同的磨削参数条件下,对氧化铝陶瓷进行普通磨削和二维超声振动磨削对比实验研究,分析工件进给速度、砂轮线速度、磨削深度对磨削力的影响。结果表明:二维超声磨削的法向、切向磨削力均小于普通磨削,磨削力降幅随着工件进给速度和砂轮线速度的增大而减小,随着磨削深度的增大而增大;普通磨削和二维超声磨削的法向、切向磨削力均随着工件进给速度和磨削深度的增大而增大,随着砂轮线速度的增大而减小。  相似文献   

13.
针对第三代单晶高温合金DD9磨削烧伤问题,设计三因素五水平实验,从表面形貌、显微硬度和显微组织等角度出发,研究磨削工艺参数对烧伤的影响规律。结果表明:当工件进给速度小于等于250 mm/min时,磨削表面粗糙度Ra在0.8μm左右小幅度变化,表面质量较好;当工件进给速度大于250 mm/min,磨削深度超过1.0 mm后,磨削区域温度急剧上升,磨削纹路被破坏,出现涂覆、凹坑等磨削缺陷,工件表面发生烧伤;DD9合金缓进给磨削工件表面及表层均表现为加工硬化,显微硬度为400~600 HV,硬化层深度在50~110μm,塑性变形层厚度为1~10μm。推荐的DD9磨削工艺参数组合为:砂轮线速度vs=20 m/s,进给速度vw=250 mm/min,磨削深度ap=0.6 mm。  相似文献   

14.
大尺寸硅片自旋转磨削的试验研究   总被引:1,自引:0,他引:1  
利用基于自旋转磨削原理的硅片超精密磨床,通过试验研究了砂轮粒度、砂轮转速、工件转速及砂轮进给速度等主要因素对材料去除率、砂轮主轴电机电流以及磨削后硅片表面粗糙度的影响关系。研究结果表明,增大砂轮轴向进给速度和减小工件转速,采用粗粒度砂轮有利于提高磨削硅片的材料去除率,砂轮轴向进给速度对材料去除率的影响最为显著;适当增大砂轮转速,减小砂轮轴向进给速度,采用细粒度砂轮可以减小磨削表面粗糙度;在其它条件一定的情况下,砂轮速度超过一定值会导致材料去除率减小,主轴电机电流急剧增大,表面粗糙度变差;采用比#2000粒度更细的砂轮磨削时,材料去除率减小,硅片表面粗糙度没有明显改善。  相似文献   

15.
ZrO2陶瓷平面磨削温度仿真分析与实验研究   总被引:1,自引:1,他引:0  
张珂  赵国欢  孙健  韩涛  刘春光 《表面技术》2017,46(12):251-258
目的研究工程陶瓷磨削参数对磨削温度的影响,磨削参数包括金刚石砂轮线速度、磨削深度及工件进给速度。方法以金刚石砂轮平面磨削ZrO_2陶瓷为例,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程。同时通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度及工件进给速度的磨削组合参数实验,利用人工热电偶法对磨削温度进行测量,将实验结果与仿真结果进行对比分析。结果砂轮线速度由30 m/s增加到50 m/s,磨削深度由5μm增加到15μm,工件进给速度由1000 mm/min增加到3000 mm/min,磨削温度和磨削热分配比均增加,仿真结果与实验结果基本一致。结论磨削过程中磨削深度和工件进给速度对磨削温度的影响较大,随着金刚石砂轮线速度、磨削深度及工件进给速度的增加,磨削温度和磨削热分配比均增大。  相似文献   

16.
金刚石砂轮磨削铁氧体的表面粗糙度与形貌分析   总被引:1,自引:1,他引:0  
本文研究了树脂结合剂金刚石砂轮磨削铁氧体材料时,磨削深度、工件进给速度对磨削表面粗糙度和材料去除方式的影响规律,以此探索提高铁氧体磨削表面质量的有效途径。采用单因素法设计试验方案对铁氧体进行磨削,测量表面粗糙度数据并对其进行方差分析,对铁氧体磨削表面形貌进行观察。结果表明:随着磨削深度、工件进给速度的增加,表面粗糙度值升高,同时表面塑性痕迹减少,脆性断裂痕迹增加,且磨削深度对表面粗糙度的影响要比工件进给速度的更显著,因此,制定磨削工艺时,考虑到粗磨为了提高效率,降低表面损伤,优化得到磨削工艺为磨削深度5μm,工件进给速度10 m/min;精磨为了获得较低的表面粗糙度,采用磨削深度5μm、工件进给速度为5 m/min,可以提高磨削表面延展性。  相似文献   

17.
研究工程陶瓷磨削参数对磨削力的影响,参数有金刚石砂轮线速度、磨削深度及工件进给速度,提高陶瓷加工效率和加工精度。以金刚石砂轮平面磨削ZrO_2陶瓷为例,通过正交实验法设计多组关于金刚石砂轮线速度、磨削深度和工件进给速度的磨削组合参数,利用平面测力仪测量不同磨削参数下的磨削力。同时,运用ABAQUS建立单颗金刚石磨粒磨削ZrO_2陶瓷的有限元模型,分析磨粒磨削陶瓷过程,将实验结果与仿真结果进行对比分析。金刚石砂轮线速度由30m/s增大到50m/s时,磨削力逐渐减小;平面磨削深度由5μm增大到15μm,磨削力逐渐增大;工件随着进给速度的增加,磨削力逐渐增大;实验结果与仿真结果基本一致。影响法向磨削力最大的因素是磨削深度,当平面磨削深度增大,法向磨削力也随之增大;砂轮线速度对切向磨削力的影响最大,随着线速度的增大,切向磨削力增大。研究结果对于提高工程陶瓷加工效率,改进加工质量具有重要的促进作用。  相似文献   

18.
针对工业机器人砂带磨削最优工艺参数组合的选择,通过机器人夹持工件进行砂带磨削,采用正交实验和极差、方差分析方法研究砂带线速度、工件进给量、横向进给速度、砂带目数对工件表面粗糙度Ra及材料去除深度MRD的影响,探究其最优工艺参数组合,并通过正交实验数据建立变量与实验结果的线性回归预测模型。结果表明:综合考虑表面粗糙度Ra及MRD的最优加工参数组合为砂带线速度18 m/s,进给量0.5 mm,横向进给速度100 mm/s,砂带目数80#。砂带目数对工件表面粗糙度Ra的影响起主导作用,砂带线速度、工件进给量次之。工件进给量对MRD的影响起主导作用,砂带线速度、砂带目数次之。当砂带目数处于80#~240#时,工件表面粗糙度Ra会随着砂带目数的增大而减小,影响程度有减弱的趋势。当工件进给量处于0.2 mm~0.5 mm时,MRD会随着工件进给量的增大而增大,影响程度有减弱的趋势。  相似文献   

19.
为了真实反映成形磨削淬硬过程中温度、组织分布状态,基于热力学和相变动力学数学模型,根据ABAQUS用户子程序接口DFLUX、USDFLD,按照FORTRAN语法规则编写代码对CAE软件进行二次开发,模拟分析了成形磨削淬硬包括冷却全过程的温度场及组织转变过程,预测工件在不同方向的温度变化及磨削淬硬完成后马氏体组织分布情况,计算工件淬硬层深度,评定其淬透性。结果表明,距表层0.32mm以上的材料将激活相变,淬硬层深度约为0.291mm。仿真模拟对磨削淬硬中控制马氏体转变量具有一定的指导作用。  相似文献   

20.
为了探究工件转速 nw 、磨削深度 ap和纵向进给速度 vf等磨削工艺参数对18CrNiMo7–6钢表面粗糙度和表层残余应力的影响,用端面外圆磨床开展其单因素外圆纵向磨削试验。结果表明:随着nw的增大,工件表面粗糙度Ra先减小后增大,当nw为120 r/min时,Ra达到最小值,此时工件表面的残余压应力最大;当nw大于120 r/min时,工件表面残余应力出现起伏。随着ap的增大,工件表面粗糙度Ra先减小后增大,工件表面残余拉应力随着磨削深度的增大而增大。随着vf的增大,工件表面粗糙度 Ra先减小后增大,当vf为210 mm/min时,Ra值最小;且随vf的增大,工件表面残余压应力逐渐减小,并最终转变为逐渐增大的残余拉应力。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号