首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以蔗糖为碳源,利用溶液法在温和条件下合成Li2FeSiO4/C的前驱体,煅烧后得到纳米球形Li2FeSiO4/C正极材料。用X射线衍射(XRD)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对材料的结构和形貌进行表征。通过恒流充放电对材料的电化学性能进行测试。结果表明,采用此法合成的前驱体在700°C煅烧9h得到的纳米Li2FeSiO4/C在室温、1.5~4.6V的电压范围内,于C/20倍率下前3次放电容量达到166mA·h/g,30次循环后容量仍保持有158mA·h/g,容量保持率达95%,表明其具有良好的电化学性能。  相似文献   

2.
锂离子电池正极材料Li2FeSiO4/C的微波合成   总被引:5,自引:0,他引:5  
采用高能球磨结合微波合成工艺,以Li2CO3、FeC2O4-2H2O、纳米SiO2和葡萄糖为原料合成锂离子电池正极材料Li2FeSiO4/C.利用X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试等方法对该材料的结构、表观形貌及电化学性能进行表征.考察超导电碳黑的添加、微波处理时间以及微波加热温度等对Li2FeSiO4/C材料合成及其性能的影响.结果表明:以超导电碳黑为微波耦合剂,采用微波合成法在650 ℃下处理10 min可快速制备具有正交结构的Li2FeSiO4/C材料;获得的Li2FeSiO4/C材料颗粒细小均匀,具有较好的电化学性能;在60 ℃下以C/20对Li2FeSiO4/C材料进行充放电时,其首次放电容量为121.7 mA-h/g,10次循环后其放电容量仍保持为119.2 mA-h/g.  相似文献   

3.
固相法合成锂离子电池正极材料Li2FeSiO4   总被引:3,自引:1,他引:2  
以SiO2、Li2CO3与FeC2O4·2H2O为原料,利用固相法制备出锂离子电池正极材料Li2FeSiO4,并通过X射线衍射,扫描电镜对材料的结构和形貌进行了分析.结果表明,制备出的Li2FeSiO4正极材料,粒度为300~400nm,颗粒分散均匀.在电压1.5~4.8V,室温下用0.1C倍率恒电电流进行充放电测试,Li2FeSiO4正极材料首次充电容量为297mAh/g,放电容量接近170mAh/g,具有良好的电化学性能.  相似文献   

4.
采用溶胶-凝胶法,合成纳米复合材料硅酸亚铁锂(Li2FeSiO4/C)。用XRD、TEM和电化学方法,研究了Co2+掺杂对Li2FeSiO4/C的影响。结果表明,掺杂适量的Co2+不会改变Li2FeSiO4的正交晶系结构,可稳定材料结构,改善高倍率充放电性能。室温下,Li2Fe0.97Co0.03SiO4/C以0.1C放电的首次放电比容量为151.8(mA.h)/g,20次充放电循环后放电比容量为131.2(mA.h)/g;Li2FeSiO4/C的首次放电比容量为122.0(mA.h)/g,20次循环后,比容量衰减率为20.3%。交流阻抗测试表明:Li2Fe0.97Co0.03SiO4/C在1.5~4.5V下充放电的可逆性优于Li2FeSiO4/C。  相似文献   

5.
用溶胶-凝胶法制备Ti4+掺杂的Li2FeSiO4/C正极材料。用XRD、HRTEM和电化学方法研究了该材料的结构、形貌和电化学性能。结果表明,掺杂适量的Ti4+不会改变Li2FeSiO4/C的正交晶系结构,可以稳定材料的结构,改善高倍率充放电性能。在室温下,Li2Fe0.97Ti0.03SiO4/C以0.1c倍率放电的首次放电比容量为149.1mA·h/g,20次循环后放电比容量为127.3mA·h/g,且不同倍率下的电化学性能明显优于未掺杂的Li2FeSiO4/C。交流阻抗谱研究表明,适量的Ti4+掺杂,减小了正极材料在充放电过程中的电荷传递电阻,增加了材料的电子电导率,改善了材料的电化学性能。  相似文献   

6.
采用原位诱导法制备得到了一系列x Li M_2O_4?(1-x)Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2(M=Ni,Co,Mn;x=0,0.1,0.2,0.3,0.4,0.5)尖晶石/层状异质结构复合材料。借助X射线衍射、扫描电镜、差示扫描量热仪、恒电流间歇滴定技术和恒电流充放电测试表征手段对材料的晶体结构、微观形貌和电化学性能进行了研究。电化学性能结果表明:x=0.2材料的倍率性能和循环性能最佳,在2.7~4.3 V、1C下循环100次后,放电比容量为137 m A?h/g,容量保持率为93%;10C时的放电比容量为112 m A?h/g,相比于原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料在10C的放电比容量(95 m A?h/g)有较大提高。此外,快充慢放能力测试也证实了该材料的结构稳定,其在5C充、1C放的充放电机制下,循环100次后的放电比容量还能高达120 m A?h/g,容量保持率为87%。恒电流间歇滴定技术(GITT)的结果表明。x=0.2材料的D_(Li+)值比原始Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2材料的要高出一个数量级,说明尖晶石相的引入从根本上改善了材料的电化学性能。  相似文献   

7.
以LiOH.H2O、Ni(OH)2和Mn3O4为原料,采用固相法合成锂离子电池正极材料Li[Li0.2Ni0.2Mn0.6]O2。通过X射线衍射(XRD)、扫描电子显微镜(SEM)对所得样品的结构和形貌进行表征,并测试了该材料的倍率性能和高低温性能。结果表明:900℃下烧结10 h后可获得晶粒细小均匀的层状Li[Li0.2Ni0.2Mn0.6]O2材料,并具有良好的电化学性能,放电容量最高可达235.9 mA.h/g;在50℃下测试时该材料的放电容量高达284.4 mA.h/g,并表现出良好的循环性能,其倍率性能和低温性能还有待进一步改善。  相似文献   

8.
采用超声活化对原材料Li2CO3和TiO2进行预处理,并采用二步煅烧方法制备Li4Ti5O12材料。利用X射线衍射仪、扫描电镜和电池充放电测试仪研究二步煅烧条件对材料结构、形貌及电化学性能的影响,并得到二步煅烧的最佳工艺。结果表明:采用600℃预烧温度制备的材料具有较高的纯度和结晶度;800℃高温煅烧温度下制备的Li4Ti5O12材料具有均一分散的颗粒结构;超声活化制备Li4Ti5O12的最佳煅烧工艺是600℃预烧8 h后800℃高温煅烧10 h,制备的材料在0.1C倍率下首次放电容量达170.6 mA.h/g,0.2C倍率下20次循环后的放电比容量由152 mA.h/g降至150 mA.h/g,容量保持率为98.7%。  相似文献   

9.
以乙酸盐为原料,采用喷雾干燥法制备层状α-NaFeO2结构的富锂正极材料Li[Li0.2Ni0.2Mn0.6]O2及掺杂Cr的Li[Li0.2Ni0.15Cr0.1Mn0.55]O2。采用X射线衍射、扫描电镜、半电池充放电和电化学阻抗谱等方法研究材料的物相、结构、形貌及电化学性能。结果表明:Cr掺杂使材料的颗粒变粗,但不改变材料的结构,而使材料的层状特征更为明显;Cr掺杂后材料的电化学性能得到明显改善,电荷转移阻抗Rct从275.0降低到105.0,循环稳定性和倍率性能均有所改善,Li[Li0.2Ni0.15Cr0.1Mn0.55]O2材料1C倍率下的放电比容量为140.0 mA.h/g,循环50次后放电比容量为133.7 mA.h/g,远高于未掺杂Cr材料的比容量,未掺杂Cr材料在1C倍率下放电比容量为107.1mA.h/g,循环50次后放电比容量为102.1 mA.h/g。  相似文献   

10.
前驱体Mn O_2的性质对产物锰酸锂性能影响显著。采用液相沉淀法制备不同性质birnessite型层状Mn O_2,研究发现,以中性条件制得的Mn O_2为前驱体,最终产物中存在Mn O_2杂相且无表面碳包覆,而以酸性条件制得的Mn O_2为前驱体可以得到碳包覆的纯相尖晶石Li Mn_2O_4。后者在0.2 C的充放电倍率下,首次放电比容量为129.7 m Ah/g,远高于前者的58.5 m Ah/g;在30 C的大倍率下,容量高达117.8 m Ah/g,经1500次循环后容量保持率约为92%。因此,将液相沉淀法条件优化为酸性得到的Li Mn_2O_4产物表现出优异的大倍率性能和循环稳定性,具有市场应用前景。  相似文献   

11.
采用真空固相法成功地合成了锂离子电池正极材料Li2Fe1-xMnxSiO4,并用FTIR、XRD和电化学性能测试对材料进行了表征.FTIR和XRD测试表明,Mn很好地崮溶到Li2FeSiO4中.电化学性能测试表明,当w≌w(Mn)=0.1%时,合成的Li2Fe1-xMnxSiO4电化学性能最佳,首次放电容量达到67.7 mAh/g,20次循环后容量仍保持在44.8 mAh/g.  相似文献   

12.
以酚醛树脂作为还原剂和碳源,采用固相法在Li Mn PO4晶格中引入铁离子制备了Li Fe_xMn_(1-x)PO_4/C复合材料。考察了掺铁量、煅烧温度和煅烧时间对材料电化学性能的影响。结果表明,制备的Li Fe_xMn_(1-x)PO_4/C为纯度较高的橄榄石型相,具有类球形形貌,颗粒尺寸300~500 nm,且分布均匀。循环充放电测试结果表明,随着掺铁量的增加,Fe~(2+)/Fe~(3+)和Mn~(3+)/Mn~(2+)氧化还原电位处的平台容量分别相应地升高和下降。其中600℃煅烧10 h制得的Li Fe0.5Mn0.5PO4/C样品具有较好的电化学性能:0.1 C倍率首次放电容量为147.3 m Ah/g;2 C倍率循环100次后,放电容量从115.2 m Ah/g降至112.7 m Ah/g,容量保持率为97.8%;10 C倍率循环200次后,容量保持率仍有89.6%。  相似文献   

13.
采用分步碳包覆法合成LiFePO4/C复合材料。首先,将原料Fe2O3、NH4H2PO4和葡萄糖经过固相反应合成Fe2P2O7/C复合材料,再将Fe2P2O7/C与前驱体Li2CO3、葡萄糖混合,通过二次碳包覆工艺合成LiFePO4/C复合材料,并考察合成温度对LiFePO4/C复合材料电化学性能的影响。采用X射线衍射、扫描电镜、差热-热重分析、电化学阻抗谱(EIS)和充放电测试对材料的性能进行表征。结果表明:以制取的Fe2P2O7/C为前驱体合成的LiFePO4/C复合材料具有较好的物理和电化学性能,材料的振实密度达1.26 g/m3,0.1C放电容量为158.3 mA.h/g,1C初次放电比容量达到140 mA.h/g。  相似文献   

14.
采用控制结晶法制备锂离子电池用高密度球形正极材料LiNi0.8Co0.2O2。对前驱体Ni0.8Co0.2(OH)2制备工艺进行优化,在金属盐溶液流速为8 mL/min,搅拌速率450 r/min,pH值为11.5,氨浓度20 g/L反应36 h的条件下,合成了振实密度为2.02 g/cm3的球形Ni0.8Co0.2(OH)2。并以Ni0.8Co0.2(OH)2为原料,与LiOH.H2O进行混合研磨进行高温烧结,考察烧结制度对合成材料LiNi0.8Co0.2O2电化学性能的影响。在Li/(Ni Co)配比为1.05、氧气流量为800 mL/min,750℃下烧结16 h所得材料LiNi0.8Co0.2O2电化学性能最优:在0.2 C,3.0~4.3 V的条件下,首次放电容量达到195.4 mA.h/g,循环50次后容量保持率达到89.2%。  相似文献   

15.
用溶胶-凝胶-微波法制备了锂离子电池正极材料Li3V2(PO4)3样品,用正交试验法考察了影响样品性能的因素,分析并优化了工艺。XRD、SEM和电化学测试表明:该方法所制备的样品为单斜结构,粒径尺寸0.2~1μm,颗粒分布比较均匀。锂源为Li2CO3、反应物摩尔比为Li∶V=3.0∶2.0、微波时间为25 min时,为最佳合成工艺条件。在此优化条件下,3.0~4.3 V区间内0.2 C放电比容量达到106 mAh/g,交换电流密度高达6.17×10-6 A/cm2。  相似文献   

16.
高振实密度球形LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2粉末的合成及性能   总被引:1,自引:0,他引:1  
以共沉淀法制备的球形Ni_(0.5)Co_(0.3)Mn_(0.2)CO_3粉末为前驱体,按一定的比例将碳酸锂与前驱体混合,然后采用高温固相法合成高振实密度球形LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2正极材料.该材料的振实密度达到2.60 g/cm~3,与商品化LiCoO_2的密度相当.SEM分析表明, LiNi_(0.5)Co_(0.3)Mn_(0.2)O_2正极材料与前驱体形貌有良好的继承性,均为理想的球形.XRD物相分析表明,在不同合成温度下的Li Ni_(0.5)Co_(0.3) Mn_(0.2)O_2产物均为具有α-NaFeO_2层状结构的纯相物质,在较高合成温度下所得材料的结晶度较高.电化学性能研究表明,在2.7~4.3 V的电压范围内,电池的放电比容量在0.2C倍率下为168.1 mA-h/g,在1C倍率下为157.6 mA-h/g;经50次循环后,两种放电条件下的电池容量保持率分别为95.1%和97.2%,显示出良好的电化学性能.  相似文献   

17.
以共沉淀法制备的类球形镍钴铝前驱体Ni_(0.94)Co_(0.04)Al_(0.02)(OH)_2与锂盐Li OH·H_2O为原料,通过高温固相法制备了球形镍钴铝酸锂Li Ni_(0.94)Co_(0.04)Al_(0.02)O_2正极材料,研究了煅烧温度对合成产物结构与性能的影响。采用XRD、SEM和EDS对Li Ni_(0.94)Co_(0.04)Al_(0.02)O_2正极材料粉末的结构、形貌和元素分布进行了表征;采用充放电测试和循环性能测试对材料的电化学性能进行研究。结果表明:745℃制备的Li Ni_(0.94)Co_(0.04)Al_(0.02)O_2正极材料层状结构较好,Ni、Co、Al三种元素分布均匀,具有最高的放电比容量和优良的循环性能;在2.8~4.3V内,0.1C倍率的首次放电比容量达221.6 m Ah/g,1C倍率下50周循环容量保持率达90%以上。  相似文献   

18.
溶胶-凝胶法制备LiFePO_4/C复合材料及其性能   总被引:3,自引:1,他引:2  
为了提高LiFePO4的电化学性能,以柠檬酸为络合剂和碳源,采用溶胶-凝胶法制备LiFePO4/C复合正极材料。采用FTIR和XRD等对前驱体及产物进行表征,并测试样品的电化学性能。结果表明:经700℃烧结10h所得产物具有单一的橄榄石型晶体结构,碳含量为10.81%(质量分数)。样品在0.1C下首次放电比容量为127.1mA·h/g,在0.2C、0.5C、1C下首次放电比容量分别为106.1、83.3、70.6mA·h/g。该样品在0.1C下经过20次循环后,容量还保持为126.3mA·h/g,衰减仅为0.035%。循环伏安和交流阻抗测试表明该材料具有较好的电化学性能。  相似文献   

19.
二步煅烧法制备高振实密度钛酸锂负极材料   总被引:1,自引:0,他引:1  
以Li2CO3和纳米TiO2为原料,通过二步煅烧固相反应法制备Li4Ti5O12负极材料。研究前驱体球磨以及球磨时间对合成Li4Ti5O12样品振实密度和电化学性能的影响。借助XRD、SEM、振实密度仪和充放电测试仪、电化学综合测试仪表征Li4Ti5O12材料的物理性能和电化学性能。结果表明:球磨工艺能够提高Li4Ti5O12的纯度,并有效提高其振实密度和电化学性能;球磨时间为2 h时,所得材料的振实密度达1.70 g/cm3,0.1C首次放电比容量为174 mA.h/g,5C放电比容量达124.2 mA.h/g。  相似文献   

20.
在三元液相体系中合成了球形Li2MnSiO4/C 复合正极材料,XRD、SEM和电化学性能测试对材料进行了表征。XRD测试表明Li2MnSiO4 具有正交结构,对应Pmn21空间群。SEM显示所得样品为小于1 μm的球形颗粒。将Li2MnSiO4/C 组装成扣式电池进行电化学测试的结果表明,在1.5~4.6 V,该样品的初始充电容量达310 mAh/g,放电容量高至 286 mAh/g,为理论比容量的85.9%;循环30 次后放电比容量为142 mAh/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号