首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the influence of the morphology on the electrocatalytic activity of nickel oxide nanostructures toward methanol oxidation is investigated. Two nanostructures were utilized: nanoparticles and nanofibers. NiO nanofibers have been synthesized by using the electrospinning technique. Briefly, electrospun nanofiber mats composed of polyvinylpyrolidine and nickel acetate were calcined at 700°C for 1 h. Interestingly, compared to nanoparticles, the nanofibrous morphology strongly enhanced the electrocatalytic performance. The corresponding current densities for the NiO nanofibers and nanoparticles were 25 and 6 mA/cm2, respectively. Moreover, the optimum methanol concentration increased to 1 M in case of the nanofibrous morphology while it was 0.1 M for the NiO nanoparticles. Actually, the one-dimensional feature of the nanofibrous morphology facilitates electrons'' motion which enhances the electrocatalytic activity. Overall, this study emphasizes the distinct positive impact of the nanofibrous morphology on the electrocatalytic activity which will open a new avenue for modification of the electrocatalysts.  相似文献   

2.
We have developed a porous-microelectrode (PME) to investigate the electroactivity of catalyst particles for proton exchange membrane fuel cells. The cavity at the tip of the PME was filled with Pt/C catalysts prepared by impregnation method. Cyclic voltammograms (CVs) recorded in 1 N H2SO4 aqueous solution revealed that the active area of the stacked catalysts exist not only at the surface but also inside of the stack. For methanol electrooxidation, 30 wt.% Pt/C exhibited the highest electroactivity, whereas the 50 wt.% Pt/C showed extremely small current. The small current is considered as a result of a small active-surface area. Methanol oxidation peak potential shifted toward cathodic direction as Pt-loading decreased, which agrees well with the Pt-oxide formation potential. The activation energy for methanol oxidation was assessed to be 44±3 kJ mol−1 for all Pt/C catalysts and Pt-disc electrode.  相似文献   

3.
Zhan Lin 《Electrochimica acta》2009,54(27):7042-9377
Pt/carbon composite nanofibers were prepared by electrodepositing Pt nanoparticles directly onto electrospun carbon nanofibers. The morphology and size of Pt nanoparticles were controlled by the electrodeposition time. The resulting Pt/carbon composite nanofibers were characterized by running cyclic voltammograms in 0.20 M H2SO4 and 5.0 mM K4[Fe(CN)6] + 0.10 M KCl solutions. The electrocatalytic activities of Pt/carbon composite nanofibers were measured by the oxidation of methanol. Results show that Pt/carbon composite nanofibers possess the properties of high active surface area and fast electron transfer rate, which lead to a good performance towards the electrocatalytic oxidation of methanol. It is also found that the Pt/carbon nanofiber electrode with a Pt loading of 0.170 mg cm−2 has the highest activity.  相似文献   

4.
Electrodes made of carbonized polyacrylonitryle (cPAN) nanofibers, with and without embedded multiwall carbon nanotubes (MWCNTs) were fabricated by the electrospinning (ES) process and evaluated as anodes in glucose fuel cell (FC) application. The effect of several processing and structural characteristics, such as the presence of MWCNTs, polymer concentration in the ES solution and silver electroless plating on FC performance were measured. The carbon electrodes were successful as anodes showing significant activity even without additional silver catalyst, with noticeable improvement by the incorporation of MWCNTs. The orientation of graphitic layers along the fiber axis and the coherence of layer packing were shown to be important for enhanced electrode activity. The maximal values of open circuit voltage (OCV) and peak of power density (PPD) of unmetalized electrodes, 0.4 V and 30 μW/cm2 respectively, were found to be for composite cPAN/CNT electrode. Electroless silver metallization of the carbon nanofiber electrodes leads to much better FC performance. Maximal values of OCV and PPD of silvered carbon electrodes were measured to be about 0.9 V and 400 μW/cm2, respectively. Thus, carbonized nanofibers with embedded MWCNTs may form a good basis for glucose FC anodes, but better metallization and cell-configuration allowing proper mixing are required.  相似文献   

5.
This work reports on the oxygen reduction activity of several non-precious metal (non-PGM) catalysts for oxygen reduction reaction (ORR) at the fuel cell cathode, including pyrolyzed CoTPP, FeTPP, H2TMPP, and CoTMPP. Of the studied catalysts, pyrolyzed CoTMPP (Co-tetramethoxyphenylporphyrin) was found to perform significantly better than other materials. The catalyst underwent a thorough testing in both hydrogen-air polymer electrolyte fuel cell (PEFC) and direct methanol fuel cell (DMFC). It was found that CoTMPP cathode can sustain currents that are only 2-3 times lower than those obtained with a conventional Pt-black cathode in an H2-air PEFC. DMFC experiments, including methanol crossover and methanol tolerance measurements, indicate high ORR selectivity of the CoTMPP catalyst. Based on results obtained to date, the CoTMPP-based catalyst offers promise for the use in conventional and mixed-reactant DMFCs operating with concentrated methanol feeds. However, hydrogen-air fuel cell life data, consisting of over 800 h of continuous cell operation, indicate that improvement to long-term stability of the CoTMPP catalyst will be required to make it practical.  相似文献   

6.
The electrochemical activities of Pt-sputtered electrodes based on vertically aligned carbon nanofibers (Pt/VACNFs) directly grown on the carbon paper are investigated. Different Pt loading (0.01 mg cm−2, 0.025 mg cm−2 and 0.05 mg cm−2) electrodes are developed. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results show that the Pt nanoparticles are homogeneously dispersed on the surface of vertically aligned carbon nanofibers. TEM and X-ray diffraction (XRD) results reveal the Pt nanoparticles diameter increase with increasing Pt loading. The Pt/VACNFs electrodes show good electrochemical active surface area, methanol oxidation peak current density and CO tolerance. The electrochemical catalyst activities weaken as the diameter grows larger. Compared to common electrodes prepared by commercial catalyst in a conventional ink-process, the performance improvement suggests that unique structure of Pt/VACNFs electrode ensures the electronic pathway and Pt nanoparticles exposed to three-phase boundary, which leads to a significant improvement of the Pt utilization and a potential application in direct alcohol fuel cells.  相似文献   

7.
Methanol electrooxidation was investigated on the carbon-supported PtRu electrocatalyst (1:1 atomic ratio) in acid media. X-ray diffraction measurement indicated alloying of Pt and Ru. Cyclic voltammetry of the sample reflects the amount of Ru in the catalyst and its ability to adsorb OH radicals. Tafel plots for the oxidation of 0.02-3 M methanol in the solutions containing 0.05-1 M HClO4 and in the temperature range 27-40 °C showed reasonably well-defined linear region with the slope of about 115 mV dec−1 at the low currents, irrespective of the experimental conditions employed. Reaction order with respect to methanol was found to be 0.5. A correlation between methanol oxidation rate and pseudocapacitive current of OH adsorption on Ru sites was established. It was proposed that bifunctional mechanism is operative with the reaction between methanol residues adsorbed on Pt sites and OH radicals adsorbed on Ru sites as the rate-determining step.  相似文献   

8.
Graphitic carbon nanofibers (GCNFs) with diameters of approximately 300 nm were developed using bundles of aligned electrospun polyacrylonitrile (PAN) nanofibers containing phosphoric acid (PA) as the innovative precursors through thermal treatments of stabilization, carbonization, and graphitization. The morphological, structural, and mechanical properties of GCNFs were systematically characterized and/or evaluated. The GCNFs made from the electrospun PAN precursor nanofibers containing 1.5 wt.% of PA exhibited mechanical strength that was 62.3% higher than that of the GCNFs made from the precursor nanofibers without PA. The molecules of PA in the electrospun PAN precursor nanofibers initiated the cyclization and induced the aromatization during stabilization, as indicated by the FT-IR and TGA results. The stabilized PAN nanofibers possessed regularly oriented ladder structures, which facilitated the further formation of ordered graphitic structures in GCNFs during carbonization and graphitization, as indicated by the TEM, XRD, and Raman results.  相似文献   

9.
Hollow graphitic carbon spheres (HGCSs) with a high surface area are produced by the carbonization of hollow polymer spheres obtained by the polymerization of core/shell-structured pyrrole micelles. HGCSs are employed as a carbon support material in a direct methanol fuel cell catalyst, and their effect on the electrocatalytic activity toward methanol oxidation is investigated. Pt catalyst supported on HGCSs shows a better electrocatalytic activity compared to that on Vulcan XC-72, which has been commonly used in fuel cell catalysts. The observed enhancement in the electrocatalytic activity is attributed to the improved electronic conductivity and high surface area of HGCSs.  相似文献   

10.
To determine the influence of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation, this work investigated methanol electrooxidation on as received and different electrochemically polarized PtRu/C catalysts. Thermogravimetric analysis (TGA) and X-ray diffraction (XRD) were used to characterize the redox state of PtRu/C after different electrochemical polarization. The methanol electrooxidation activity was measured by cyclic voltammetry (CV), Tafel steady state plot and electrochemical impedance spectroscopy (EIS). The results indicate that the metallic state Pt0Ru0 can be formed during cathodic polarization and contribute to electrooxidation of methanol, while the formation of inactive ruthenium oxides during anodic polarization cause the negative effect on methanol electrooxidation. Different Tafel slopes and impedance behaviors in different potential regions also reveal a change of the mechanism and rate-determining step in methanol electrooxidation with increasing potentials. The kinetic analysis from Tafel plots and EIS reveal that at low potentials indicate the splitting of the first CH bond of CH3OH molecule with the first electron transfer is rate-determining step. However, at higher potentials, the oxidation reaction of adsorbed intermediate COads becomes rate-determining step.  相似文献   

11.
The factors controlling the behavior and the stability of electrocatalysts based on Pt, Ru and Mo nanoparticles during exhaustive electrochemical treatment are examined. Along this treatment, it has been observed that in the case of ternary catalysts there are pronounced changes in the structure of their surface resulting in electrode activation for methanol and CO electrooxidation, whereas the activity of binary PtRu/C and PtMo/C catalysts decreases. Therefore, the role of both Ru and Mo is crucial for the electrochemical activation of the catalyst, though metal losses do occur during electrochemical process. For the first time a detailed study of this phenomenon is presented, including characterization by HRTEM, TXRF, XRD, electrochemical measurements and in situ Fourier transform infrared spectroscopy (FTIR). In order to get a deeper insight into the surface structure, chemical state, and stability of the electrocatalyst under reaction conditions, a combination of cyclic voltammetry, chronoamperometry and X-ray photoelectron spectroscopy (XPS) has been used. By comparing bulk and surface composition, our results point out to the key role of the geometric effect enhanced by previous reduction of the nanoparticles. At the end of the electrochemical treatment, Mo-PtRu/C catalysts surface was restructured with substantial enrichment in Pt and a less pronounced Mo surface enrichment, while Ru is incorporated into the Pt-Mo overlayer. These results underline the possibility of further optimization of the surface structure and composition producing PtRuMo nanoparticles with high methanol and CO oxidation activity.  相似文献   

12.
In this study, a series of micro/nanostructured polyanilines were synthesized and their morphology-dependent electrochemical properties for acting as a catalyst supporter for direct methanol fuel cell (DMFC) applications were investigated. These micro/nanostructures include submicron spheres, hollow microspheres, nanotubes, and nanofibers. Among the four micro/nanostructures, polyaniline nanofibers (PANF) manifest their superiority in high electrochemical active surface. Accordingly, PANF is adopted as the catalyst supporter thereafter. To couple with the use of the alternative catalyst supporter, this study also investigates the effect of reductant type on morphology and electrocatalytic properties of the PANF-supported Pt particles through a chemical reduction reaction. TEM images indicate that formic acid as a reductant results in well-dispersed Pt particles on the PANF surface. On the other hand, aggregations of Pt are observable when NaBH4 is selected as a reductant. Moreover, the methanol oxidation current density measured with the Pt/PANF electrode being prepared by using formic acid is double that by using NaBH4. Compared with Pt/XC-72, the Pt/PANF electrode possesses higher electrocatalytic activity and exhibits double power density. Moreover, Pt/PANF is superior to Pt/XC-72 in the aspect of operation stability based on a continuous discharge for 5 h.  相似文献   

13.
Cobalt based non-precious metal catalysts were synthesized using chelation of cobalt (II) by imidazole followed by heat-treatment process and investigated as a promising alternative of platinum (Pt)-based electrocatalysts in proton exchange membrane fuel cells (PEMFCs). Transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements were used to characterize the synthesized CoNx/C catalysts. The activities of the catalysts towards oxygen reduction reaction (ORR) were investigated by electrochemical measurements and single cell tests, respectively. Optimization of the heat-treatment temperature was also explored. The results indicate that the as-prepared catalyst presents a promising electrochemical activity for the ORR with an approximate four-electron process. The maximum power density obtained in a H2/O2 PEMFC is as high as 200 mW cm−2 with CoNx/C loading of 2.0 mg cm−2.  相似文献   

14.
Catalyst of Pt-Co supported on single-walled carbon nanotubes (SWCNTs) is prepared using mixed reducing agents. The SWCNTs were pretreated in a microwave oven to enable surface modification. Pt-Co nanoparticles with narrow particle size distribution around 5.4 nm were uniformly deposited onto the SWCNTs. Under same Pt loading mass and experimental conditions, the SWCNTs-Pt-Co catalyst shows higher electrocatalytic activity and improved resistance to CO poisoning than the SWCNTs-Pt catalyst.  相似文献   

15.
The carbon nanotube (CNT) synthesised by the template carbonisation of polypyrrole on alumina membrane has been used as the support for Pt-WO3, Pt-Ru, and Pt. These materials have been used as the electrodes for methanol oxidation in acid medium in comparison with E-TEK 20 wt% Pt and Pt-Ru on Vulcan XC72R carbon. The higher electrochemical surface of the carbon nanotube (as evaluated by cyclic voltammetry) has been effectively used to disperse the catalytic particles. The morphology of the supported and unsupported CNT has been characterised by scanning electron micrograph and high-resolution transmission electron micrograph. The particle size of Pt, Pt-Ru, and Pt-WO3 loaded CNT was found to be 1.2, 2, and 5 nm, respectively. The X-ray photoelectron spectra indicated that Pt and Ru are in the metallic state and W is in the +VI oxidation state. The electrochemical activity of the methanol oxidation electrode has been evaluated using cyclic voltammetry. The activity and stability (evaluated from chronoamperometric response) of the electrodes for methanol oxidation follows the order: GC/CNT-Pt-WO3-Nafion>GC/E-TEK 20% Pt-Ru/Vulcan Carbon-Nafion>GC/CNT-Pt-Nafion>GC/E-TEK 20% Pt/Vulcan carbon-Nafion>Bulk Pt. The amount of nitrogen in the CNT plays an important role as observed by the increase in activity and stability of methanol oxidation with N2 content, probably due to the hydrophilic nature of the CNT.  相似文献   

16.
Masoumeh Bayat 《Polymer》2011,52(7):1645-1653
In order to develop multifunctional nanofibers, the electrical conductivity and magnetic properties of Fe3O4/carbon composite nanofibers have been examined. Polyacrylonitrile (PAN) is used as a matrix to produce magnetic composite nanofibers containing different amounts of magnetite (Fe3O4) nanoparticles. Electrospun composite nanofibers were thermally treated to produce electrically conductive and magnetically permeable composite carbon nanofibers. The composite nanofibers were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffractometry (XRD), Raman spectroscopy, four-point probe and Superconducting Quantum Interference Device (SQUID). Uniform nanofibers were obtained with successful transferring of magnetic properties of Fe3O4 into the as-spun composite nanofibers. The electromagnetic properties were tuned by adjusting the amount of Fe3O4 in the matrix and carbonization process. The electrical conductivity, magnetic moment and also magnetic hysteresis rise up by adding Fe3O4 and increasing carbonization temperature. The high surface area provided by the ultrafine fibrous structures, the flexibility and tuneable electromagnetic properties are expected to enable the expansion of the design options for a wide rage of electronic devices.  相似文献   

17.
Motivated by the demonstrated magnetic field effect on the oxygen reduction reaction in polymer electrolyte fuel cells (PEMFC), a number of PtFe/C catalysts with different magnetic characteristics were prepared and tested for methanol electrooxidation in acidic solutions at room temperature. The catalysts were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray microanalysis (EDX) and vibrating sample magnetometry (VSM). The activity and CO tolerance of the catalysts in the methanol oxidation reaction (MOR) was measured by cyclic voltammetry and anodic CO stripping voltammetry, respectively. Heat treatment transformed the as-prepared PtFe/C from a face-centered cubic (fcc) structure into a face-centered tetragonal (fct) structure. Vibrating sample magnetometer (VSM) measurements confirmed the as-prepared PtFe/C as superparamagnetic, and the heat-treated catalysts as ferromagnetic. The heat-treated ferromagnetic catalysts were, however, low in specific mass activity and showed no improvement in CO tolerance relative to the as-prepared one. These results led us to conclude that the magnetic modification of catalysts through heat treatment have no practical contributions to the catalysis of MOR.  相似文献   

18.
Liwen Ji 《Electrochimica acta》2010,55(5):1605-7699
Copper-loaded carbon nanofibers are fabricated by thermally treating electrospun Cu(CH3COO)2/polyacrylonitrile nanofibers and utilized as an energy-storage material for rechargeable lithium-ion batteries. These composite nanofibers deliver more than 400 mA g−1 reversible capacities at 50 and 100 mA g−1 current densities and also maintain clear fibrous morphology and good structural integrity after 50 charge/discharge cycles. The relatively high capacity and good cycling performance of these composite nanofibers, stemmed from the integrated combination of metallic copper and disordered carbon as well as their unique textures and surface properties, make them a promising electrode candidate for next-generation lithium-ion batteries.  相似文献   

19.
This paper reports novel results regarding the effects of electrospun carbon nanofibers (e-CNF) as a catalyst support by comparison with the commercial Vulcan XC-72R (denoted as XC-72R) as granular particles. The e-CNF was synthesized by stabilizing and carbonizing the electrospun PAN-based fibers. The e-CNF showed an average diameter of 250 nm with a rough surface and was partially aligned along the winding direction of the drum winder. The characteristic morphology was fundamentally dependant on the shape of the carbon materials. The average pore size of the e-CNF was 2.36 nm, while that of the XC-72R was 10.92 nm. The morphology of e-CNF was developed by shallow pores with rough surfaces due to the effects of electrospinning and carbonization, while that of the XC-72R was largely developed by mesopores rather than micropores due to the granular shape. Compared to XC-72R, the performance of the MEA prepared by e-CNF was excellent, owing to the morphology and the enhanced electrical conductivity. The Pt utilization of Pt/e-CNF was 69%, while that of Pt/XC-72R was 35%.  相似文献   

20.
Shuttle effect of the dissolved polysulfide is a main disadvantage for Li-S batteries, which has been explored by several polar materials to absorb lithium polysulfide with physical and chemical effect. Herein, for the first time, a composite of carbon nanofibers decorated with MnO nanoparticles (CNF-MnO) has been prepared by the facile electrospinning method followed by thermal treatment. SEM and TEM characterization delivered that the MnO NPs on CNF did not change the morphology but decrease the electronic conductivity of CNF-MnO composite. The CNF-MnO composite exhibited excellent electrochemical cyclic stability because of its strong chemical absorption for polysulfide. Interestingly, CNF-MnO composite served as both cathode as well interlayer for Li-S batteries. The CNF-MnO-S as cathode material showed an initial discharge capacity of 683.2 mAh g-1 at 1.0?C and remained 592.0 mAh g-1 even after 250 cycles with the capacity decay of 0.053% per cycle. As well, CNF-MnO as interlayer delivered superior cycling stability even at high current density of 3.0?C, where the capacity still maintained 542.2 mAh g-1 over 200 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号