首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometrically non-linear free vibrations of thin isotropic and laminated rectangular composite plates with fully clamped edges have been successfully investigated in previous series of works using a theoretical model based on Hamilton’s principle and spectral analysis. The objective of this work is the extension of the above model to the case of clamped clamped simply supported simply supported rectangular plates, denoted by CCSSSSRP, in order to determine their fundamental non-linear mode shape, and associated amplitude-dependent resonant frequencies, and flexural stress distribution. Numerical data are given for both linear and non-linear analysis, for various plate aspect ratios and vibration amplitudes. Good agreement was found with previous published results.  相似文献   

2.
A complete set of linear equations of the second-order theory of laminated composite plates are obtained. A generalized Levy type solution in conjunction with the state space concept is used to analyze the free vibration behavior of cross-ply and antisymmetric angle-ply laminated plates. Exact fundamental frequencies of cross-ply plate strips are obtained for arbitrary boundary conditions. The exact analytical solutions are obtained for thick and moderately thick plates as well as for thin plates and plate strips. It is shown that the results of the second-order theory are very close to the results of the first-order and third-order theories reported in the literature, and different from those of the classical Kirchhoff’s theory for thick laminates.  相似文献   

3.
The results of a three-dimensional, geometrically nonlinear, finite-element analysis of the bending of cross-ply laminated anisotropie composite plates are presented. Individual laminae are assumed to be homogeneous, orthotropic and linearly elastic. A fully three-dimensional isoparametric finite element with eight nodes (i.e. linear element) and 24 degrees of freedom (three displacement components per node) is used to model the laminated plate. The finite element results of the linear analysis are found to agree very well with the exact solutions of cross-ply laminated rectangular plates under sinusiodal loading. The finite element results of the three-dimensional, geometrically nonlinear analysis are compared with those obtained by using a shear deformable, geometrically nonlinear, plate theory. It is found that the deflections predicted by the shear deformable plate theory are in fair agreement with those predicted by three-dimensional elasticity theory; however stresses were found to be not in good agreement  相似文献   

4.
A post-buckling analysis is presented for a simply supported, composite laminated rectangular plate under biaxial compressive loading and resting on a two-parameter (Pasternak-type) elastic foundation. The analysis uses a perturbation technique to determine the interactive buckling loads and post-buckling equilibrium paths. The initial geometrical imperfection of the plates is taken into account. Numerical examples are presented that relate to the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated rectangular plates. Typical results are presented in dimensionless graphical form.  相似文献   

5.
对于中厚板或层合板而言,横向剪切变形的影响是显著的,采用三阶剪切变形理论比采用经典薄板理论和一阶剪切变形理论能更好的满足精度的要求,而且能更好地描述板的剪切变形和剪应力沿厚度方向的分布情况.本文用解析的方法研究了简支、自由和固定三种边界条件的任意组合下三阶剪切变形板的自由振动问题.首先应用哈密顿原理建立自由振动方程,再通过引入中间变量使得原来耦合的自由振动方程得到解耦和简化,基于分离变量法,利用边界条件得到基函数的表达式,利用Rayleigh-Ritz法,求得三阶剪切变形板在任意边界条件下的固有频率和振型.本文得到的结果可以为厚板在工程中的应用提供理论依据,具有较高的工程实际应用价值.  相似文献   

6.
A finite strip analysis of the vibration of rectangular Mindlin plates with general boundary conditions is described. The normal modes of vibration of Timoshenko beams are used to represent the spatial variation along a strip of the deflection and the two cross-sectional rotations. For the crosswise representation equal-order polynomial interpolation is employed for each of these three basic quantities. The accuracy of the approach is demonstrated by the results of a number of applications to square plates with combinations of simply supported, clamped and free edges.  相似文献   

7.
The finite strip method has been applied to the stability analysis of rectangular shear-deformable composite laminates. However, for the plates with two opposite simply supported sides, the existing analysis was restricted to the symmetrical cross-ply laminates under compression loading.In the present study, by selecting proper displacement functions and including the coupling between different series terms, the finite strip method is extended to the stability analysis of any anisotropic laminated plates under arbitrary in-plane loading. Furthermore, a number of numerical results are presented to show the effects of thickness, fibre orientation and stacking sequence on the buckling loads.  相似文献   

8.
《Computers & Structures》1986,24(3):443-454
Buckling of multi-annular plates is considered. The plate is loaded by axisymmetric radial in-plane forces, either at the outer edge or at one of the circumferential joints or a combination of the two. The plate is simply supported or clamped at the outer boundary or at one of the common joints. The various annular sections are fully connected, and they differ either in geometry or in material properties. Each annular section is homogeneous. A power series solution is used because of its applicability to various boundary conditions. A computer code is employed for the solution. Numerical examples are given for a two-part plate. The procedure is general and can be employed in various problems, such as buckling of annular plates resting on an elastic foundation, vibration analysis of annular plates, etc.  相似文献   

9.
Three-dimensional finite strip analysis of laminated panels   总被引:2,自引:0,他引:2  
In this paper, a combined finite strip and state space approach is introduced to obtain three-dimensional solutions of laminated composite plates with simply supported ends. The finite strip method is used to present in-plane displacement and stress components, while the through-thickness components are obtained by using the method of state equation. The method can replace the traditional three-dimensional finite element solutions for structures that have regular geometric plans and simple boundary conditions, where a full three-dimensional finite element analysis is very often both extravagant and unnecessary. The new method provides results that show good agreement with available benchmark problems having different material compositions, thickness and boundary conditions. The new method provides a three-dimensional solution for laminated plates, while the advantages of using the traditional finite strip method are fully taken. This solution also yields a continuous transverse stress field across material interfaces that normally is not achievable by other numerical modelling of laminates, such as the traditional finite element method.  相似文献   

10.
Free vibration of plates with arbitrarily oriented stiffeners are studied using high precision plate bending and stiffener elements. Good convergence of frequency values for coarse mesh is demonstrated. Natural frequencies of square plates with various arrangement of stiffeners are determined for both simply supported and clamped boundary conditions.  相似文献   

11.
A comprehensive literature survey on the vibration of thin skew plates is presented and a few virgin areas on this subject are identified. As an initial part of a research plan to fill these gaps, the paper focuses on vibrating skew plates with internal line supports. For analysis, the pb-2 Rayleigh-Ritz method is used. The Ritz function is defined by the product of (1) a two-dimensional polynomial function, (2) the equations of the boundaries with each equation raised to the power of 0, 1, or 2 corresponding to a free, simply supported or clamped edge and (3) the equations of the internal line supports. Since the pb-2 Ritz function satisfies the kinematic boundary conditions at the outset, the analyst need not be inconvenient by having to search for the appropriate function; especially when dealing with any arbitrary shaped plate of various combinations of supporting edge conditions. Based on this simple and accurate pb-2 Rayleigh-Ritz method, tabulated vibration solutions are presented for skew plates with different edge conditions, skew angles, aspect ratios and internal line support positions.  相似文献   

12.
针对Z型折叠机翼这种复杂多体结构,运用多种不同的方法得到了结构的前4阶振动模态.将Z型折叠机翼假设为由三块碳纤维复合材料板组成,两板之间均以刚性铰链相连接.其中内翼左侧是固定端,并与机身相连接;中间翼以对边简支形式连接在内外翼之间;外翼的外端是自由端.在第一个铰链上施加驱动力矩M1为机翼提供折叠角速度,使中间翼进行转动;同时施加力矩M2于第二个铰链处,使外翼与内翼始终保持平行.本文首先利用Hamilton原理与von Karman大变形理论建立Z型折叠机翼的动力学模型,然后通过ANSYS软件设置合理的边界条件进行模态分析与谐响应分析,其次根据ANSYS模拟的Z型折叠机翼的振动形式,假设合适的模态函数,通过结构边界条件和系统动力学方程求出来的边界条件,求出三个板的横向振动模态函数,最后通过Maple验证得出的模态函数与ANSYS模拟的振动形式相符合.该研究不仅是Z型机翼的受迫振动响应分析的前提,而且对于Z型机翼的设计与实验也具有参考价值.  相似文献   

13.
With in-plane stresses calculated by finite element analysis, critical loads are obtained by the Rayleigh-Ritz method for a square plate subjected to uniform edge shear stress and containing centrally located circular holes. Elastic and elasto-plastic buckling is examined for clamped and simply supported plates, and results are compared with previous analyses and experiments for various sized holes. The range of hole sizes considered is extended to include larger holes than previously examined, and for small holes, the results suggest that the critical stress is higher than previously thought. For elasto-plastic buckling, critical shear stresses are given for the full range of appropriate slenderness. Experimental results for the cases of simply supported plates support the analytical results, whereas verification for clamped plates remains inconclusive on account of limited reliable test data.  相似文献   

14.
Optimal design problems of sandwich plates with soft core and laminated composite face layers, and multilayered composite plates are investigated. The optimal design problems are solved by using the method of the planning of experiments. The optimization procedure is divided into the following stages: choice of control parameters and establishment of the domain of search, elaboration of plans of experiment for the chosen number of reference points, execution of the experiment, determination of simple mathematical models from the experimental data, design of the structure on the basis of the mathematical models discovered, and finally verification experiments at the point of the optimal solution. Vibration and damping analysis is performed by using a sandwich plate finite elements based on a broken line model. Damping properties of the core and face layers of the plate are taken into account in the optimal design. Modal loss factors are computed using the method of complex eigenvalues or the energy method. Frequencies and modal loss factors of the plate are constraints in the optimal design problem. There are also constraints on geometrical parameters and the bending stiffness of the plate. The mass of the plate is the objective function. Design parameters are the thickness of the plate layers. In the points of experiments computer simulation using FEM is carried out. Using this information, simple mathematical models for frequencies and modal loss factors for the plate are determined. These simple mathematical functions are used as constraints in the nonlinear programming problem, which is solved by random search and the penalty function method. Numerical examples of the optimal design of clamped sandwich and simply supported laminated composite plates are presented. A significant improvement of damping properties of a sandwich plate is observed in comparison with a simple plate of equal natural frequencies.  相似文献   

15.
The elastic buckling of rectangular Mindlin plates is considered using two related methods of analysis. These methods are the Rayleight-Ritz method and one of its piece-wise forms, the finite strip method. Arbitrary combinations of the standard boundary conditions of clamped, simply-supported and free edges are accommodated by the use in the assumed displacement fields of the normal modes of vibration of Timoshenko beams. The applied membrane stress field leading to buckling can comprise biaxial direct stress plus shear stress. A range of numerical applications is described for isotropic and transversely isotropic plates of thin and moderately thick geometry. The results obtained using the two methods compare closely to one another and to other published results where these are available. A direct relationship between unidirectional buckling stress and frequency of vibration is demonstrated for a category of plates having one pair of opposite edges simply supported.  相似文献   

16.
正交各向异性叠层板的非线性主共振分析   总被引:1,自引:1,他引:0  
研究了在四边简支的边界条件下,正交各向异性矩形叠层板在横向简谐激励作用下的非线性主共振及其稳定性问题.在给出了正交各向异性叠层板的振动微分方程的基础上,利用伽辽金法导出了相应的达芬型非线性强迫振动方程.应用平均法对主共振问题进行求解,得到了系统在稳态运动下的幅频响应方程.基于李雅普诺夫稳定性理论,得到了解的稳定性判定条件.作为算例,分别给出了不同条件下,系统运动的幅频响应曲线图、振幅-激励幅值响应曲线图和动相平面图,并对解的稳定性进行了分析,讨论了各参数对系统非线性振动特性的影响.  相似文献   

17.
The free transverse vibration characteristics of rectangular plates, including the effect of transverse shear deformation and rotary inertia, are presented. A method based on the variational procedure in conjunction with the finite difference technique is used to determine the natural frequencies and mode shapes. The convergence characteristics of the present method are studied by varying the thickness parameter and running a comparison with the classical thin plate solutions. The effects of the thickness parameter and taper thickness ratio on the vibration characteristics are studied. The predictions are presented for the simply supported and clamped plates and they are compared with existing solutions based on the thin plate theory.  相似文献   

18.
《Computers & Structures》1987,26(4):673-680
The problem of linear elastic plate bending is solved by a boundary point method. Four fundamental homogeneous solutions for each of a number of sources, which are situated outside the plate, are superimposed and combined with appropriate particular solutions. Each source point is associated with a boundary point, which may be clamped or simply supported. At each boundary point, four edge conditions are enforced which allow the scalar coefficients, introduced in the superposition process, to be determined, and, hence, the plate displacement and stress solution to be obtained. Four non-rectangular example plates are considered, under uniform and hydrostatic loading, for which no internal sub-division is required, and it is demonstrated that accurate solutions may be obtained with 10–14 boundary points.  相似文献   

19.
This paper presents a semi-analytical finite element solution for the stress analysis of cross-ply laminated composite plates. The method is based on a mixed variational principle that includes the variations of both displacements and stresses. Finite element approximation is introduced only for the in-plane variations of displacements and stresses, while the through-thickness distributions of them are obtained by using the method of state equation. Numerical tests show that the results obtained approach the analytical three-dimensional solutions. Moreover, the use of the recursive formulation of the state equation leads to the solution of an algebra equation system whose order does not depend on the number of material layers of the laminate. Compared with the traditional finite element method, the new solution always provides continuous distributions of both displacements and transverse stresses across material interfaces.  相似文献   

20.
A finite element formulation is developed for analyzing large amplitude free flexural vibrations of elastic plates of arbitrary shape. Stress distributions in the plates, deflection shape and nonlinear frequencies are determined from the analysis. Linearized stiffness equations of motion governing large amplitude oscillations of plates, quasi-linear geometrical stiffness matrix, solution procedures, and convergence characteristics are presented. The linearized geometrical stiffness matrix for an eighteen degrees-of-freedom conforming triangular plate element is evaluated by using a seven-point numerical integration. Nonlinear frequencies for square, rectangular, circular, rhombic, and isosceles triangular plates, with edges simply supported or clamped, are obtained and compared with available approximate continuum solutions. It demonstrates that the present formulation gives results entirely adequate for many engineering purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号