首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal stability of strained Si/Si1−xGex/Si structures grown by molecular beam epitaxy was investigated by resistive heating and in situ Rutherford backscattering spectrometry. Ge profiles obtained from a 50 nm Si1−xGex layer on a Si(100) substrate capped with 50 nm Si were evaluated for different Ge concentrations after sequential heating periods at a particular temperature between 850 and 1010° C. The diffusion coefficients, calculated from the increase in signal in the tail of the Ge profile, proved to be comparable to the value for Ge in bulk Si. A more pronounced decrease of the signal at the center of the Ge profile indicated a faster diffusion within the SiGe layer which was confirmed by analysis of the FWHM of the Ge profile. Ion channeling measurements were used to characterize tetragonal strain in the buried SiGe layers. Angular scans through the 111 direction were interpreted with Monte Carlo channeling calculations and used to study strain relaxation in dislocation-free and partially relaxed layers.  相似文献   

2.
Formation of Si1−xGex-alloy layers by solid phase epitaxial growth (SPEG) of Ge+ ion implanted silicon has been studied. The ion implantations were performed with 40, 100, 150, 200 and 300 keV 74Ge+ ions and various ion doses. The SPEG of the ion implanted layers was carried out in a conventional furnace at 850°C for 20 min under a flow of nitrogen gas. The Si1−xGex-alloy layers were characterised by Rutherford backscattering spectrometry and transmission electron microscopy (TEM). For a given ion energy, a Si1−xGex-alloy layer with no observable extended defects can be manufactured if the ion dose is below a critical value and strain-induced defects are formed in the alloy layer when the ion dose is equal to or above this value. The critical Ge+ ion dose increases with ion energy, while the critical maximum Ge concentration decreases. For ion energies ⩽150 keV, the defects observed in the alloy layers are mostly stacking faults parallel to the {1 1 1} planes. For higher ion energies, 200 keV and above, the majority of defects in the alloy layer are hairpin dislocations. In the whole ion energy range, the critical ion dose and the depth position of the nucleation site for the stacking faults obtained from the measurements are in good agreement with theoretical predictions. Extended defects are formed in the alloy layer during the SPEG when the regrowth of the crystalline/amorphous interface has reached the depth position in the crystal where the accumulated strain energy density is equal to the critical value of 235 mJ/m2.  相似文献   

3.
Si1−xGex amorphous layers implanted with different doses of carbon (between 5 × 1015 and 2 × 1017 cm−2 and annealed at 700°C and 900°C have been analyzed by Raman and Infrared spectroscopies, electron microscopy and Auger electron spectroscopy. The obtained data show the synthesis of amorphous SiC by implanting at the highest doses. In these cases, recrystallization only occurs at the highest annealing temperature (900°C). The structure of the synthesized SiC strongly depends on the implantation dose, in addition to the anneal temperature. For the highest dose (2 × 1017 cm−2), crystalline β-SiC is formed. Finally, a strong migration of Ge towards the Si substrate is observed from the region where SiC precipitation occurs.  相似文献   

4.
1 Introduction Relaxed SiGe layers have gained considerable attention due to their applications in strained Si/SiGe high electron mobility transistor, metal-oxide-semi- conductor field-effect transistor (MOSFET) and other devices. High-quality relaxed SiGe templates, espe- cially those with low threading dislocation density and smooth surface, are crucial for the electrical perform- ance of devices.[1,2] In order to realize high-quality relaxed SiGe layer with such good characteristics, …  相似文献   

5.
Si1 − xGex epitaxial layers fully strained (x = 0.27) and relaxed (x = 0.55) have been implanted with C ions at 500°C. Implantation energy and doses were selected to obtain the C peak in the central region of the SiGe layer, with a concentration similar to the Ge content. The implanted layers have been analyzed by Raman scattering, X-ray diffraction, transmission electron microscopy and secondary ion mass spectroscopy. The data obtained show the direct synthesis of β-SiC precipitates aligned in relation to the SiGe lattice after the implantation, as well as a Ge enrichment and stress relaxation of the SiGe lattice. For the relaxed layer a significant Ge redistribution from the implanted region is observed.  相似文献   

6.
In this work we use in-situ conductivity measurements during ion irradiation as a sensitive probe of the defect structure of amorphous Si. Electronic transport in amorphous Si occurs by hopping at the high density ( 1020 cm−3 eV−1) of deep lying localized states introduced by the defects in the band gap. In-situ conductivity measurements allow to follow directly the defect generation and annihilation kinetics during and after ion bombardment of the material. Amorphous Si layers, patterned to perform conductivity measurements, were annealed at 500°C in order to reduce the defect density by about a factor of 5. Defects were subsequently reintroduced by high energy ion irradiation at different temperatures (77–300 K). During irradiation the conductivity of the layer increases by several orders of magnitude and eventually saturates. Turning off the beam results in a decrease of the conductivity by a factor of 2 in times as long as a few hours even at 77 K. The effects of different ions (He, C, Si, Cu, and Au) and different ion fluxes (109–1012 ions/cm2 s) on these phenomena have been explored. These data give a hint on the mechanisms of defect production and annihilation and demonstrate a strong correlation between electrical and structural defects in amorphous silicon.  相似文献   

7.
The effects of Ti or Nb substitution on the thermal stability and brazing characteristics of Zr0.7−xMxBe0.3 (M=Ti or Nb) ternary amorphous alloys were investigated in order to improve properties of Zr–Be binary amorphous alloy as a new filler metal for joining zirconium alloy. The Zr0.7−xMxBe0.3 (M=Ti or Nb; 0x0.1) ternary amorphous alloys were produced by melt-spinning method. In the selected compositional range, the thermal stability of Zr0.7−xTixBe0.3 and Zr0.7−xNbxBe0.3 amorphous alloys are improved by the substitution of titanium or niobium for zirconium. As the Ti and Nb content increases, the crystallization temperatures increase from 610°C to 717°C and 610°C to 678°C, respectively. These amorphous alloys were put into practical use in joining bearing pads on zircaloy cladding sheath. Using Zr–Ti–Be amorphous alloys as filler metals, smooth interface and spherical primary particles (proeutectic phase) appear in the brazed layer, which is the similar microstructure of using Zr0.7Be0.3 binary amorphous alloys. In the case of Zr–Nb–Be amorphous alloys, Ni-precipitated Zr phase that may cause some degradation in ductility and corrosion-resistance is formed at both sides of the brazed layer.  相似文献   

8.
Epitaxial, buried silicon carbide (SiC) layers have been fabricated in (100) and (111) silicon by ion beam synthesis (IBS). In order to study the ion beam induced epitaxial crystallization (IBIEC) of buried SiC layers, the resulting Si/SiC/Si layer systems were amorphized using 2 MeV Si2+ ion irradiation at 300 K. An unexpected high critical dose for the amorphization of the buried layers is observed. Buried, amorphous SiC layers were irradiated with 800 keV Si+ ions at 320 and 600°C, respectively, in order to achieve ion beam induced epitaxial crystallisation. It is demonstrated that IBIEC works well on buried layers and results in epitaxial recrystallization at considerably lower target temperatures than necessary for thermal annealing. The IBIEC process starts from both SiC/Si interfaces and may be accompanied by heterogenous nucleation of poly-SiC as well as interfacial layer-by-layer amorphization, depending on irradiation conditions. The structure of the recrystallized regions in dependence of dose, dose rate, temperature and crystal orientation is presented by means of TEM investigations.  相似文献   

9.
10.
We report on the effect of the rapid thermal annealing (RTA) ambiance on evolution of self-assembled voids of nanometer size. The spherically shaped voids are produced in molecular beam epitaxially grown Si/SiGe/Si strained structures with in-situ implantation of 1 keV Ge ions followed by RTA at 800 or 900 °C. The voids are of nanometer size and are exclusively assembled in the narrow SiGe layer. During the RTA, the voids grow in size in a nitrogen ambiance and shrink in an oxygen ambiance. The evolution of the voids correlates well with oxidation-induced injection of excess interstitials. Prospects for point defect monitoring are discussed.  相似文献   

11.
Thermal regrowth of a Si(100) surface, damaged by 80 keV Sb implantation, was monitored by angular resolved photoemission (ARUPS), Rutherford backscattering (RBS) and channelling. It was found that regrowth in UHV at 650°C does not result in a well ordered surface. Annealing at higher temperatures (700–1100°C) results in densities of surface defects of (2.5 ± 0.4) × 1015 at./cm2. A well ordered Si(100)2 × 1 reconstructed surface can be formed only after removal of a 10 nm thick layer by Ne ion bombardment, and heat treatment at 600°C. These observations can be explained by the formation of a surface layer with misoriented domains simultaneously with the solid phase epitaxy.  相似文献   

12.
Epitaxial Si/GexSi1 − x heterojunctions were formed by high dose Ge ion implantation in Si followed by rapid thermal annealing at 1000°C for 10 s. This technique was adopted to fabricate Si/GexSi1 − x heterojunction n-p-n bipolar transistors (HBT) using a self-aligned, double polycrystalline silicon process commonly used for fast Si bipolar transistors. The devices are characterized by a 60 nm wide neutral base with a Ge concentration peak of ≈ 7 at.% at the base-collector junction. Good static and dynamic electrical characteristics are demonstrated and discussed.  相似文献   

13.
In the present study, a 500 Å thin Ag film was deposited by thermal evaporation on 5% HF etched Si(1 1 1) substrate at a chamber pressure of 8×10−6 mbar. The films were irradiated with 100 keV Ar+ ions at room temperature (RT) and at elevated temperatures to a fluence of 1×1016 cm−2 at a flux of 5.55×1012 ions/cm2/s. Surface morphology of the Ar ion-irradiated Ag/Si(1 1 1) system was investigated using scanning electron microscopy (SEM). A percolation network pattern was observed when the film was irradiated at 200°C and 400°C. The fractal dimension of the percolated pattern was higher in the sample irradiated at 400°C compared to the one irradiated at 200°C. The percolation network is still observed in the film thermally annealed at 600°C with and without prior ion irradiation. The fractal dimension of the percolated pattern in the sample annealed at 600°C was lower than in the sample post-annealed (irradiated and then annealed) at 600°C. All these observations are explained in terms of self-diffusion of Ag atoms on the Si(1 1 1) substrate, inter-diffusion of Ag and Si and phase formations in Ag and Si due to Ar ion irradiation.  相似文献   

14.
Si/SiGe/Si heterostructures grown by ultra-high-vacuum chemical vapor deposition (UHVCVD) were characterized by Rutherford backscattering/Channeling (RBS/C) together with high resolution X ray diffraction (HRXRD). High quality SiGe base layer was obtained. The Si/SiGe/Si heterostructures were subject to conventional furnace annealing and rapid thermal annealing with temperature between 750℃ and 910℃. Both strain and its relaxation degree in SiGe layer are calculated by HRXRD combined with elastic theory, which are never reported in other literatures. The rapid thermal annealing at elevated temperature between 880℃ and 910℃ for very short time had almost no influence on the strain in Si0.84Ge0.16 epilayer. However, high temperature (900℃@) furnace annealing for 1h prompted the strain in Si0.84Ge0.16 layer to relax.  相似文献   

15.
1IntroductionSilicongermaniamalloyshavereceivedgreatattentioninrecentdecadefOrtheirpo-tentialapplicationinadvancedelectronicandoptoe1ectronicdeyices[1~41.Theoxidationbehaviorofthismaterial,however,continuestobeatroublesomeissuethatimPedesitstAnelydevelopment.Previousresearchesdemonstratedthathighgermaniamcontent,inthealloyandlowtemperaturecouldformaAnxtureoxidelayeIofSiO, GeOgst'].WhengermaniumconcentrationisloweIonlySiO2fo...d[7'8].Inthepresentstudy,OkidationhasbeenpeIformedat8oO'Cand9…  相似文献   

16.
Electron-beam-irradiation effects on silicon carbide (SiC) was investigated as a function of the irradiated temperatures. Single crystalline 6H-SiC was irradiated with 300 kV electrons at temperatures ranging from −170 to 250 °C. It was found that amorphous SiC is induced at −170 °C and room temperature, while crystalline Si is formed at 250 °C with a high electron fluence. It is considered that preferential knock-on displacement of C atoms and damage recovery play an important role in the formation of the amorphous SiC and crystalline Si.  相似文献   

17.
The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+irradiation at room temperature and 350°C has been studied. For irradiations at 350°C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 × 1015 + Si/cm2 for GaAs, and is 5 × 1015 Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350°C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.  相似文献   

18.
Variation of the ion beam induced charge (IBIC) pulse heights due to ion irradiation was investigated on a Si pn diode and a 6H-SiC Schottky diode using a 2 Mev He+ micro-beam. Each diode was irradiated with a focused 2 MeV He+ micro-beam to a fluence in the range of 1×109–1×1013 ions/cm2. Charge pulse heights were analyzed as a function of the irradiation fluence. After a 2 MeV ion irradiation to the Si pn junction diode, the IBIC pulse height decreased by 15% at 9.2×1012 ions/cm2. For the SiC Schottky diode, with a fluence of 6.5×1012 ions/cm2, the IBIC pulse height decreased by 49%. Our results show that the IBIC method is applicable to evaluate irradiation damage of Si and SiC devices and has revealed differences in the radiation hardness of devices dependent on both structural and material.  相似文献   

19.
The damage produced by implanting, at room temperature, 3 μm thick relaxed Si1−xGex layers with 2 MeV Si+ ions has been measured as a function of Ge content (x = 0.04, 0.13, 0.24 or 0.36) and Si dose in the dose range 1010–1015 cm−2. The accumulation of damage with increasing dose has been studied as a function of Ge content by Rutherford Backscattering Spectrometry, Optical Reflectivity Depth Profiling and Transmission Electron Microscopy and an increased damage efficiency in Si1−xGex with increasing x is observed. The characteristics of implantation-induced defects have been investigated by Electron Paramagnetic Resonance. The results are discussed in the context of a model of the damage process in SiGe.  相似文献   

20.
Silicon carbide (SiC) precipitates buried in Si(1 0 0) substrates were synthesized by ion implantation of 50 keV and 150 keV C+ ions at different fluences. Two sets of samples were subsequently annealed at 850 °C and 1000 °C for 30 min. Fourier transform infrared (FTIR) spectroscopy studies and X-ray diffraction (XRD) analysis confirmed formation of β-SiC precipitates in the samples. Ion irradiation with 100 MeV Ag7+ ions at room temperature does not induce significant change in the precipitates. It could be interpreted from the FTIR observations that ion irradiation may induce nucleation in Si + C solution created by ion implantation of C in Si. Modifications induced by swift heavy ion irradiation are found to be dependent on implantation energy of C+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号