首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
电极制备工艺对储氢合金电化学性能的影响   总被引:1,自引:0,他引:1  
通过合金电极电化学容量与粘结剂的类型、导电剂的用量、电极粉末颗粒尺寸的关系,讨论了制极制备工艺对储氢合金M1(NiCoSiMnAl)5电化学性能的影响。结果表明:选择6%-9%的PVA溶液作为粘结剂,合金电极可获得满意的充放电性能;采用粒度范围较宽的合金粉制作电极,有利于增加合金粉末的填充密度,提高储氢合金的利用率;导电剂用量对电极性能的影响显著。  相似文献   

2.
孙中子  王井银 《金属学报》1988,24(1):138-140
非晶合金性能的研究主要集中在磁性和机械性能方面,相比之下耐腐蚀等化学性能的研究较少。本文讨论的耐蚀非晶态Fe_(75)Cr_5P_(13)C_7合金粉末是采用工艺简单,成本低廉的内旋转溶液方法制的。在粉末中加入适量的粘结剂,压制成型,得到块体材料,研究其耐蚀性能。  相似文献   

3.
Ni对非晶态Co-B合金电化学储氢性能的影响   总被引:1,自引:0,他引:1  
通过化学还原共沉积法引入元素Ni制备了三元非晶态Co-Ni-B合金,并研究了元素Ni对非晶Co-B合金电化学储氢性能的影响。结果表明,含镍23.8at%非晶态Ni-Co-B合金的可逆放电容量约为250mAh/g,较非晶Co-B合金下降约20mAh/g,但循环稳定性二者相同,即在650mA/g的高电流密度下循环60次容量几乎保持不变。但进一步增加Ni含量,含镍35.8at%的非晶态Ni-Co-B合金的放电容量和循环稳定性都较不掺杂时发生大幅下降。但是,元素Ni的引入能有效抑制高电流密度充电过程中Co-B合金表面大量氢气的析出,减小电极放电电压平台和容量在循环过程中的波动。这可能得益于以下2个原因:(1)非晶Ni-Co-B合金对水分解的电催化活性降低;(2)吸附态氢原子在非晶Ni-Co-B合金基体中的扩散速度高于在Co-B合金中的扩散速度。  相似文献   

4.
采用机械合金化法,制备了MgNi非晶储氢合金。探讨了球磨生成非晶的机制。用SEM和XRD分析了合金的表面形貌和相组成。研究不同的球磨工艺如球料比、球径配比、转速以及球磨时间对合金电极电化学性能的影响。所制备的MgNi非晶合金电极的放电容量最高为450mAh/g,但是容量衰减较快。  相似文献   

5.
稀有金属材料的耐蚀性及其在化工领域的应用   总被引:2,自引:0,他引:2  
随着稀有金属工业的不断发展,其价格的不断降低,具有特殊耐蚀性能的新型合金的不断出现,稀有金属作为耐蚀结构材料应用越来越广泛。本文对钛、锆、镍、钽等稀有金属材料的耐蚀特性及耐蚀机理进行了全面的分析,并对其制品在化工领域的应用进行了综合评价。  相似文献   

6.
具有超结构特征的稀土-镁-镍基贮氢合金作为新一代金属氢化物/镍(MH/Ni)电池负极材料,因其高的放电容量和好的倍率放电性能,是目前贮氢电极合金发展的重点材料之一。本文从材料相结构、贮氢特性和电化学性能之间的关系出发,综述了近年来国内外稀土-镁-镍基AB3型、A2B7型和A5B19型贮氢电极合金的研究进展,为开发兼具高容量和长寿命的新型稀土系贮氢电极合金提供有价值的参考。  相似文献   

7.
快速凝固Ti-Zr-Ni合金的电化学贮氢性能   总被引:2,自引:0,他引:2  
采用铜辊快速凝固方法制备了Ti45Zr30Ni25和Ti50Zr25Ni25合金,并对合金作为镍-氢二次电池负极的动力学和电化学性能进行了研究.结果表明,Ti45Zr30Ni25为非晶相合金,Ti50Zr25Ni25合金由准晶相和非晶相组成.两合金电极的最大放电容量分别为129和132mAh/g.在240mA/g电流密度下,高倍率放电性能(HRD)分别为62.7%和63.3%.合金电极的交换电流密度分别为205.1和375.6mA/g,氢在合金中的扩散系数分别为5.4×10-11和5.8×10-11cm2·S-1.  相似文献   

8.
镁基复合贮氢合金的合成及其电化学性能   总被引:4,自引:0,他引:4  
采用机械合金化法合成了NiB粉末,并将其与MgNi非晶态合金进行机械复合,研究了复合对MgNi贮氢合金电极结构及电化学性能的影响。XRD结构分析表明MgNi—NiB通过机械复合后形成了均一的非晶相。电化学性能测试表明:NiB的复合虽然使得MgNi合金电极的初始放电容量有所降低,但是大幅度地提高了电极的循环稳定性。  相似文献   

9.
采用铜模喷铸法制备了Mg65Ni21Pr14块体非晶合金,研究了该合金在充放电循环过程中组织变化及其对电化学性能的影响。XRD分析表明,非晶合金电极在第6次充放电循环后开始晶化,生成Mg2NiH4和Ni5Pr相。电化学测试表明,Mg65Ni21Pr14非晶合金电极经过3次循环即可活化,其最大放电容量达到429.4 mAh·g-1,经过100次循环后,容量保持率为87.63%。研究表明,非晶结构是实现合金高放电容量和循环稳定性的重要因素。  相似文献   

10.
以吐温-80(Tw-80)即C6-4H124O26-80作分散剂,用超声波沉淀法制备出针形和准球形混合的纳米β-Ni(OH)2,将制备的纳米粉体以8%(质量分数,下同)比例掺入到微米级球镍中制成复合镍正极,LaNi5合金制成电池负极,研究了不同Tw-80比对纳米粉体振实密度及其复合镍正极放电性能的影响.结果表明:振实密度和放电容量均随Tw-80用量增加先增大后减小;复合镍电极的放电平台比纯球镍电极高;Tw-80用量为2%制备的纳米粉体,以8%比例与球镍混合时,其复合镍电极的放电容量最大,达到256.7 mAh/g,比纯球镍电极的放电容量(230.7 mAh/g)高出11.3%,寿命也比后者有一定延长.  相似文献   

11.
用熔体快淬工艺制备了La-Mg-Ni系A2B7型La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05,0.1,0.15,0.2)电极合金。用XRD、SEM、TEM分析了铸态及快淬态合金的微观结构,用程控电池测试设备测试了铸态及快淬态合金电极的电化学循环稳定性,研究了快淬工艺对合金结构及电化学循环稳定性的影响,探讨了电极合金的失效机理。结果表明,快淬态合金均具有多相结构,包括两个主相(La,Mg)Ni3及LaNi5和一个残余相LaNi2。快淬处理可以显著改善合金的电化学循环稳定性。导致合金失效的主要原因是电极表面被电解液剧烈腐蚀以及合金电极在电化学循环过程中的粉化。  相似文献   

12.
在不同保压时间下制备了Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3储氢合金电极,研究了保压时间对合金电极的活化性能、最大放电容量、放电特性和循环稳定性的影响规律和机制。结果表明,保压时间对合金电极的活化性能基本无影响,而合金电极的其他电化学性能随着保压时间的增大均呈现出先变好后变坏的变化规律,保压时间为15min时,合金展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度加速和内阻减小。  相似文献   

13.
Single-phase, non-stoichiometric La(Ni/Cu)x compounds (5.0x6.0) have been prepared by annealing the solids at the appropriate temperatures within the homogeneity regions of the materials phase diagrams. The effects of both the non-stoichiometric composition and the chemical composition (Ni-to-Cu ratio) on the crystallographic and electrochemical properties have been investigated. A special substitutional mechanism is presented which can account for the crystallographic data. This mechanism involves the partial replacement of La atoms by dumbbell pairs of Ni atoms, whereas Cu atoms are argued to occupy preferentially the crystallographic positions surrounding these dumb-bells. Electrochemical parameters, such as the storage capacity, cycling stability and discharge efficiency, have been determined and are found to be strongly dependent on both the non-stoichiometric and the chemical composition of the compounds. Microscopic investigations of the electrochemically cycled electrodes revealed an unequivocal correlation between particle size reduction and cycling stability. A model is proposed which can account for the cycle life behaviour of these non-stoichiometric compounds. This model, in which the electrode surface area and the materials oxidation rate constant play an essential role, has been tested using electrodes with different surface areas.  相似文献   

14.
在不同保压时间下制备Mm0.3Ml0.7Ni3.55Co0.75Mn0.4Al0.3储氢合金电极,研究保压时间对合金电极的活化性能、最大放电容量、放电特性和循环稳定性的影响规律和机制。结果表明,保压时间对合金电极的活化性能基本无影响。合金电极的其它电化学性能随保压时间的增加均呈现出先变好后变坏的变化规律,保压时间为15min时,合金展示了最佳的综合电化学性能,电化学性能的改善主要归因于合金电极的电荷转移速度加速和内阻减小。  相似文献   

15.
The multi-wall carbon nanotubes (MWNTs) were synthesized by chemical vapor deposition (CVD) using LaNi5 alloy particles as catalyst. The effect of 40–60 nm MWNTs treated with different temperature in nitrogen on the electrochemical properties of CNTs–Ni electrode were investigated. Three-electrode system was introduced for testing electrochemical hydrogen storage of the electrode. The CNTs–Ni electrodes were used as the working electrode, which were prepared by mixing MWNTs and Ni powder in a weight ratio of 1:10 (MWNTs:Ni). Ni(OH)2/NiOOH worked as the counter electrode and Hg/HgO as the reference electrode. A 6 mol/L KOH solution acted as the electrolyte. MWNTs treated with different temperature in nitrogen ambient represented a great discrepancy in the electrochemical hydrogen storage capability under the same testing condition. The CNTs–Ni electrodes with 40–60 nm diameter CNTs which were treated in a temperature of 800 °C in nitrogen has the best electrochemical hydrogen storage capacity of 588.1 mAh/g and a corresponding discharging plateau voltage of 1.18 V. From 500 to 800 °C, the higher temperature the MWNTs treated, the better the electrochemical hydrogen storage property of them is. This shows that the temperature of treatment is an important factor that influences electrochemical hydrogen storage performance of MWNTs.  相似文献   

16.
为了使热喷涂层有高的结合强度,一般要在基体上先喷一薄的底层,然后再喷工作层。Ni/Al是目前最广泛使用的底层材料。以A3钢为基体,通过火焰粉末、火焰线材及等离子喷涂试验,考察Ni-Al底层的作用,发现在大多情况下强化效果是明显的,但对个别涂层作用也不大。  相似文献   

17.
1. IntroductionAmong the binary alloys ZrMZ (M=V,Cr,Mn,Fe,Co,Mn etc.), ZrVZ and ZrCrZ all?Xscan absorb a large quantity of hydrogen to form hydride as ZrVZH6 and ZrCr,H..,[1].The effects of V or Cr atom sites substituted by nickel atom on the crystal structure andelectrochemical properties of the binary ZrVZ or ZrCrZ alloys were investigated extensivelydue to the higher hydrogen storage in binary alloys[Z13]. Many high-performance ABZ typeLaves phase electrode alloys based on Zr…  相似文献   

18.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

19.
1 INTRODUCTIONNickel metalhydride (MH Ni)rechargeablebatterieswithhydrogenstoragealloysasthenegativeelectrodematerialhaveattractedincreasingattentionsbecauseofseveralinherentadvantages[16 ] .Sofar ,manymulti component,mischmetal based ,hydro gen storagealloyshavebeendevelopedtomeetthere quirementofhighcyclinglife ;theseincludesubstitu tionofthenickelbyMn ,CoandAl[7] .Thecomposi tionofthealloyisimportant ,andtheeffectsofsur facecompositionandmorphologyarealsosignificant.Micro encapsulat…  相似文献   

20.
通过化学镀再电化学氧化的方法在铜片表面制备出带有微米微坑和微米微球的均一NiO/Ni(OH)2和B参杂的NiO/Ni(OH)2(B)两种电极材料,采用扫描电镜(SEM/EDX)、X射线衍射(XRD)、X射线光电子能谱(XPS)和电化学技术对所制备的两种电极材料进行表征和电化学性能测试。SEM、XRD和XPS的测试结果表明, 所制备的两种电极材料由Ni、NiO和Ni(OH)2组成,并且NiO/Ni(OH)2(B)中B的参杂量可达14.6wt%。循环伏安测量和恒电流充放电试验表明,两种电极材料均具有较高的电化学活性和可逆性;在1 A/g的充放电电流密度下, 两种NiO/Ni(OH)2和NiO/Ni(OH)2(B)电极材料经历10000次充放电循环后分别给出了1380 和1930F/g的比电容, 显示出较高的比电容特性和良好的电化学稳定性;电化学阻抗谱表明NiO/Ni(OH)2(B)电极材料较NiO/Ni(OH)2电化学反应电阻降低了约2个数量级;Ragone曲线揭示了所制备的两种电极材料具有较高的功率密度和较低的能量密度。B的参杂使得NiO/Ni(OH)2(B)电极材料表面氧化物含量增大并且形成微米微球形貌,增大了电极表面积以及与电解液的接触和润湿作用,降低了电极材料表面能带带隙能,从而导致较小的电化学反应电阻和电导率的提高是其显示优异赝电容性能的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号