首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preventive effects of combined or separate treatment for 10 weeks with an aldose reductase inhibitor, epalrestat (50 mg/kg/day), and a vasodilator, cilostazol (30 mg/kg/day), on nerve conduction deficits and morphometric alterations were examined in streptozotocin-induced diabetic rats. The average motor nerve conduction velocities (MNCV) in the tail nerve of the untreated diabetic (DM) group, the group treated with epalrestat (ES), the group treated with cilostazol (CZ), the group with both agents together (ES&CZ), and the normal control group were 34.7, 37.7, 39.3, 39.0 and 42.1 m/s, respectively. All treatments partially but significantly prevented a reduction in MNCV. The MNCV in the ES&CZ group was almost the same as in the CZ group. In a morphometric study of the sural nerve, the DM group showed a reduction in the average diameter of myelinated fiber and in occupancy (percentage of the fascicular area occupied by myelinated fibers), and a shift in the diameter-frequency histogram to smaller diameters. Only the CZ group showed evidence of a partial but significant preventive effect on the decrease in occupancy. In the CS and ES&CZ groups, there was a significant tendency away from the shift of histograms to smaller diameters. The ES&CZ group did not show any fewer morphometric changes than the CZ group. Thus, there was no synergism between the effects of epalrestat and cilostazol on the development of experimental diabetic neuropathy. This finding may provide a useful clue to the mechanisms of action of ES and CZ in diabetic neuropathy.  相似文献   

2.
Motor and sensory nerve conduction velocities (MNCV and SNCV) were reduced in the sciatic nerve of rats after 4 weeks of untreated streptozotocin-induced diabetes, and declined further during the following 4 weeks. Treating diabetic rats with the novel peptide HP228 had no effect on the decline of MNCV after the first 4 weeks of diabetes but attenuated the decline in SNCV. HP228 treatment also prevented any further decline in MNCV or SNCV between weeks 4 and 8 of diabetes. Consequently, at the conclusion of the study, the nerve conduction velocities (NCVs) in treated rats were significantly (both P < .001) higher than in untreated diabetic rats. Reduced nerve homogenate Na+,K+-adenosine triphosphatase (ATPase) activity in diabetic rats was significantly (P < .05) increased by HP228 but remained significantly (P < .05) lower than in untreated controls. HP228 treatment also reduced nerve Na+,K+-ATPase activity of control rats compared with untreated controls (P < .05). There was no effect of HP228 on the hyperglycemia, nerve polyol accumulation, myo-inositol depletion, reduced nerve laser Doppler blood flow, thermal hypoalgesia, or reduced mean axonal caliber in diabetic rats or on any of these parameters in control rats. These data demonstrate that a novel peptide may protect against the slowing of nerve conduction in prolonged diabetes and that the mechanism of action is unrelated to aldose reductase inhibition, prevention of nerve ischemia, or axonal atrophy. HP228 may prove a potential therapeutic agent for the treatment of prolonged diabetic neuropathy.  相似文献   

3.
To determine the effect of time in culture on epithelial cell function, we evaluated the modulation of Na(+)-K(+)-ATPase activity in rat alveolar type II cells in culture. Ouabain sensitivity testing revealed that the alpha-1 predominance in the enzyme's isoforms was maintained over the 120 hours in culture. Basal Na(+)-K(+)-ATPase activity in the whole cell homogenate did not differ significantly between cells cultured for 48 hours and those cultured for 120 hours. Terbutaline (10 mM) did not activate Na(+)-K(+)-ATPase in the cells cultured for 48 hours, but, it significantly increased the activity of this enzyme in the cells cultured for 120 hours cells cultured for 48 hours, produced intracellular cyclic AMP after exposure to 10 mM of terbutaline. These results indicate that the coupling between Na(+)-K(+)-ATPase and the beta-adrenergic pathway in alveolar type II cells can be influenced by the time in cell culture.  相似文献   

4.
The rationale for these experiments is that administration of L-carnitine and/or short-chain acylcarnitines attenuates myocardial dysfunction 1) in hearts from diabetic animals (in which L-carnitine levels are decreased); 2) induced by ischemia-reperfusion in hearts from nondiabetic animals; and 3) in nondiabetic humans with ischemic heart disease. The objective of these studies was to investigate whether imbalances in carnitine metabolism play a role in the pathogenesis of diabetic peripheral neuropathy. The major findings in rats with streptozotocin-induced diabetes of 4-6 weeks duration were that 24-h urinary carnitine excretion was increased approximately twofold and L-carnitine levels were decreased in plasma (46%) and sciatic nerve endoneurium (31%). These changes in carnitine levels/excretion were associated with decreased caudal nerve conduction velocity (10-15%) and sciatic nerve changes in Na(+)-K(+)-ATPase activity (decreased 50%), Mg(2+)-ATPase (decreased 65%), 1,2-diacyl-sn-glycerol (DAG) (decreased 40%), vascular albumin permeation (increased 60%), and blood flow (increased 65%). Treatment with acetyl-L-carnitine normalized plasma and endoneurial L-carnitine levels and prevented all of these metabolic and functional changes except the increased blood flow, which was unaffected, and the reduction in DAG, which decreased another 40%. In conclusion, these observations 1) demonstrate a link between imbalances in carnitine metabolism and several metabolic and functional abnormalities associated with diabetic polyneuropathy and 2) indicate that decreased sciatic nerve endoneurial ATPase activity (ouabain-sensitive and insensitive) in this model of diabetes is associated with decreased DAG.  相似文献   

5.
The present study investigated the effect of NT-3, a neurotrophin expressed in nerve and skeletal muscle, on myelinated fiber disorders of galactose-fed rats. Adult, female Sprague-Dawley rats were fed diets containing complete micronutrient supplements and either 0% D-galactose (control) or 40% D-galactose. Treated controls received 20 mg/kg NT-3 and treated galactose-fed rats received 1, 5, or 20 mg/kg NT-3 three times per week by subcutaneous injections. After 2 months, sciatic and saphenous sensory nerve conduction velocity (SNCV) and sciatic motor nerve conduction velocity (MNCV) were measured and the sciatic, sural, peroneal and saphenous nerves and dorsal and ventral roots processed for light microscopy. Treatment of control animals with NT-3 had no effect on any functional or structural parameter. Compared to control values, galactose feeding induced a sensory and motor nerve conduction deficit and a reduction in axonal caliber. Treatment with 5 and 20 mg/kg NT-3 ameliorated deficits in sciatic and saphenous SNCV in galactose-fed rats but had no effect on the MNCV deficit. NT-3 treatment also attenuated the decrease in mean axonal caliber in the dorsal root and sural nerve but not in the saphenous nerve, ventral root and peroneal nerve. These observations show that NT-3 can selectively attenuate the sensory conduction deficit of galactose neuropathy in a dose-dependent manner that depends only in part on restoration of axonal caliber of large-fiber sensory neurons.  相似文献   

6.
To evaluate the ability of cilostazol, an antiplatelet and vasodilating agent, to promote axonal regeneration in streptozotocin-induced diabetic rats, the time until beginning of regeneration (initial delay) and the axonal regeneration rate of the sciatic nerve were estimated using the pinch test, and ornithine decarboxylase activity was measured in dorsal root ganglia. At 5 weeks of diabetes, axonal regeneration rate remained unchanged but the initial delay was prolonged and ornithine decarboxylase induction was delayed in diabetic rats compared with those in normal rats. Cilostazol had little effect on these parameters in normal or diabetic rats. At 10 weeks of diabetes, diabetic rats showed both prolongation of initial delay and a decrease in axonal regeneration rate. Cilostazol markedly increased axonal regeneration rate in diabetic rats. Ornithine decarboxylase induction following nerve injury disappeared almost completely in diabetic rats but was maintained by cilostazol treatment. The effect of cilostazol in diabetic rats is thought to be mediated through its preventive effect on circulatory disorders. The active site of the drug appears to be early processes in nerve regeneration before ornithine decarboxylase induction. Further, the results suggest that the both axonal regeneration and this induction are sensitive to circulatory defects in diabetes.  相似文献   

7.
A fraction from normal human plasma inhibiting Na(+)-K(+)-ATPase has been recently identified as lysophosphatidylcholine (LPC). The aim of this study was to investigate the existence of a relationship between the activity of the cellular membrane Na(+)-K(+)-ATPase and plasma LPC in human diabetes. We studied 10 patients with insulin-dependent-diabetes mellitus (IDDM), 14 patients with non-insulin-dependent diabetes mellitus (NIDDM), and 10 sex- and age-matched control subjects. Plasma LPC concentrations were increased in both IDDM and NIDDM patients compared with control subjects. Na(+)-K(+)-ATPase activity was reduced in both groups of patients in erythrocyte and platelet membranes. There was a significant correlation between the concentrations of plasma LPC and Na(+)-K(+)-ATPase activity in both erythrocyte and platelet membranes (P < 0.01). To investigate the effect of LPC on the enzyme, Na(+)-K(+)-ATPase activity was determined in erythrocyte membranes obtained from six healthy subjects after in vitro incubation with increasing concentrations of LPC (1-10 microM). Enzymatic activity was significantly reduced by in vitro LPC at a concentration of 2.5 microM, with a further decrease at 5 microM. These data suggest that the decrease in Na(+)-K(+)-ATPase activity in diabetes might be due to increased LPC concentrations.  相似文献   

8.
We examined whether H(+)-ATPase, H(+)-K(+)-ATPase, and or Na+/H+ exchange mediates increased distal tubule acidification in animals with chronic metabolic alkalosis using pharmacological inhibitors of these H+ transporters in in vivo-perfused tubules of anesthetized rats. Chronic metabolic alkalosis was induced with furosemide followed by minimum electrolyte diet and HCO3 drinking water. The reduction in net HCO3 reabsorption was greater in distal tubules of alkalotic compared to control animals perfused with Schering 28080 to inhibit H(+)-K(+)-ATPase (-6.4 +/- 0.9 vs. -1.4 +/- 0.5 pmol/mm.min-1, P < 0.02) and with EIPA to inhibit Na+/H+ exchange (-11.1 +/- 1.7 vs. -6.6 +/- 0.9 pmol/mm.min-1, P < 0.01) but was similar in distal tubules of alkalotic and control animals perfused with bafilomycin to inhibit H(+)-ATPase. The greater reduction of distal tubule net HCO3 reabsorption in alkalotic compared to control animals induced by EIPA was eliminated by systemic infusion of the endothelin receptor antagonist bosentan (-4.6 +/- 0.7 vs. -4.4 +/- 0.7 pmol/mm.min-1, P = NS) but the greater reduction induced by Schering 28080 persisted. Urine endothelin-1 (ET-1) excretion was higher in animals with maintained alkalosis (164.5 +/- 23.7 vs. 76.6 +/- 10.8 fmol/day, P < 0.03), but decreased following KCl repletion to a value (86.7 +/- 10.0 fmol/day, P < 0.02 vs. respective before-KCl value) that was not different from that for KCl-repleted control animals (79.9 +/- 8.7 fmol/day, P = NS vs. KCl-repleted alkalotic animals). The data support that augmented distal tubule acidification in alkalotic animals is due to increased H(+)-K(+)-ATPase and Na+/H+ exchange activity, the latter stimulated by endogenous endothelins.  相似文献   

9.
Small-conductance, ATP-sensitive K(+)-channels (KATP) localized in apical membranes of both thick ascending limb of the loop of Henle and cortical collecting duct cells may be involved in Na+ reabsorption and K+ secretion in the mammalian kidney. Possible pharmacologic tools to evaluate such an hypothesis may be the antidiabetic sulfonylureas which block K(+)-channels in pancreatic beta-cells. In saline-loaded conscious rats, glyburide (GLY) dose-dependently increased urinary Na+ excretion with little change in urinary K+ excretion after i.p. administration (10-100 mg/kg). In renal clearance studies, GLY at 25 mg/kg i.v. increased Na+ excretion 350% during the first hour post-treatment without affecting K+ excretion, glomerular filtration rate, mean arterial pressure or heart rate. GLY at 50 mg/kg was no more natriuretic than the 25 mg/kg dose, whereas 12.5 mg/kg of GLY increased Na+ excretion 200%. The change in Na+ excretion produced by 25 mg/kg of GLY in streptozotocin-induced diabetic rats was significantly greater than the change after drug vehicle in these animals. It is unlikely that the natriuresis produced by GLY is secondary to changes in plasma insulin and/or glucose because the doses used were far above GLY's insulin-releasing action (i.e., all natriuretic doses would have produced maximal insulin release) and GLY was natriuretic in streptozotocin-induced diabetic rats. It is possible that GLY interferes with reabsorption of Na+ by blocking KATP and thereby interrupting K+ recycling and Na(+)-2Cl(-)-K+ cotransport in the loop of Henle.  相似文献   

10.
The sodium-potassium activated and magnesium dependent adenosine-5'-triphosphatase (Na(+)-K(+)/Mg(+2) ATPase EC.3.6.1.3.) activity and lipid peroxidation and early ultrastructural findings were determined in rat brain at the acute stage of ischaemia produced by permanent unilateral occlusion of the middle cerebral artery (MCA). The effects of the pretreatment with intravenous high-dose methylprednisolone (MP) on these biochemical indices and ultrastructural findings were also evaluated in the same model. The rats were divided into four groups. In group I, 10 rats were used to determine Na(+)-K(+)/Mg(+2) ATPase activity and the extent of lipid peroxidation by measuring the malondialdehyde (MDA) content and normal ultrastructural findings. In group II on 20 rats, only subtemporal craniectomy was done in order to determine the effects of the surgical procedure on these indices and findings. This group was treated intravenously with saline solution before occlusion. In group III with MCA occlusion, saline solution was administered intravenously to 20 rats in the same amount of methylprednisolone used in group IV, ten minutes before the occlusion. In Group IV, a single high-dose (30 mg/kg) of methylprednisolone was administered intravenously, ten minutes before occlusion in 20 rats. After occlusion of the middle cerebral artery, Na(+)-K(+)/Mg(+2) ATPase activity was decreased promptly in the first ten minutes in the ischaemic hemisphere and remained at a lower level than the contralateral hemispheres in the same group and the normal levels in group I, during 120 minutes of ischaemia. A single dose methylprednisolone pretreatment prohibited the inactivation of Na(+)-K(+)/Mg(+2) ATPase. On the other hand, there was significant difference in malondialdehyde content between group I and group III. Malondialdehyde levels were significantly increased following ischaemia and a non-significant increase was observed in the contralateral hemisphere. Methylprednisolone treatment significantly decreased malondialdehyde content on the side of the ischaemic hemisphere. We conclude that there is a positive relationship between membrane-bound enzyme Na(+)-K(+)/Mg(+2) ATPase activity, malondialdehyde content and early ultrastructural changes in the treated group with MP. These data suggest that the pretreatment injection of high doses (30 mg/kg) methylprednisolone contribute to the protection of the brain from ischaemia with stabilization of the cell membrane by effecting the lipid peroxidation and the activation of Na(+)-K(+)/Mg(+2) ATPase.  相似文献   

11.
In this study we analysed the changes in the properties of rat cerebral cortex Na+K(+)-ATPase in streptozotocin induced diabetes (STZ-diabetes). Special attempt was made to determine whether insulin treatment of diabetic animals could restore the altered parameters of this enzyme. Na+/K(+)-ATPase activity was found to be decreased by 15% after 2 weeks, and by 37% after 4 weeks in diabetic rat brains with a parallel decrease in maximal capacity of low affinity ouabain binding sites. There was no significant change in the high affinity ouabain binding sites. The Kd values did not change significantly. Western blot analysis of brain Na+/K(+)-ATPase isoforms indicated a 61 +/- 5.8% and 20 +/- 2.8% decrease of the alpha 1 and alpha 3 isoforms, respectively in 4 weeks diabetic animals. Change in the amount of the alpha 2 isoform proved to be less characteristic. Both types of beta subunit isoform showed a significant decrease in four weeks diabetic rats. Our data indicate a good correlation in diabetic rats between changes in Na-/K(+)-ATPase activity, low affinity ouabain binding capacity and the level of alpha 1 isoform. While insulin treatment of diabetic animals restored the blood glucose level to normal, a complete reversal of diabetes induced changes in Na+/K(+)-ATPase activity, ouabain binding capacity and Na+/K(+)-ATPase isoform composition could not be achieved.  相似文献   

12.
Diabetic neuropathy has been associated with a decrease in nerve conduction velocity, Na,K-ATPase activity and characteristic histological damage of the sciatic nerve. The aim of this study was to evaluate the potential effect of a dietary supplementation with fish oil [(n-3) fatty acids] on the sciatic nerve of diabetic rats. Diabetes was induced by intravenous streptozotocin injection. Diabetic animals (n = 20) were fed a nonpurified diet supplemented with either olive oil (DO) or fish oil (DM), and control animals (n = 10) were fed a nonpurified diet supplemented with olive oil at a daily dose of 0.5 g/kg by gavage for 8 wk. Nerves were characterized by their conduction velocity, morphometric analysis and membrane Na, K-ATPase activity. Nerve conduction velocity, as well as Na,K-ATPase activity, was improved by fish oil treatment. A correlation was found between these two variables (R = 0.999, P < 0.05). Moreover, a preventive effect of fish oil was observed on nerve histological damage [endoneurial edema, axonal degeneration (by 10-15%) with demyelination]. Moreover, the normal bimodal distribution of the internal diameter of myelinated fibers was absent in the DO group and was restored in the DM group. These data suggest that fish oil therapy may be effective in the prevention of diabetic neuropathy.  相似文献   

13.
The present investigation was designed to determine whether atrial natriuretic peptides consisting of amino acids 1-30 (i.e. long-acting natriuretic peptide), 31-67 (vessel dilator), 79-98 (kaliuretic peptide), and 99-126 [atrial natriuretic factor (ANF)] of the 126 amino acid ANF prohormone inhibit sodium-potassium-ATPase as part of their mechanism(s) of action for producing a natriuresis and/or kaliuresis. Kaliuretic peptide, long-acting natriuretic peptide, vessel dilator and ANF at their 10(-11) M concentrations inhibited Na(+)-K(+)-ATPase 39.5%, 27.8%, 19.2%, and 4% respectively, in bovine renal medulla, whereas their inhibition in renal cortical membranes was 37.5%, 27.5%, 20%, and 0%, respectively. Ouabain (0.5 mM) inhibited kidney medullary Na(+)-K(+)-ATPase 45% and in the cortex, 38%. There was no additive effect of any of these peptides with ouabain suggesting that they are interacting with the same site on the Na(+)-K(+)-ATPase as ouabain. To help elucidate the mechanism of these peptides' interaction with Na(+)-K(+)-ATPase, naproxen (0.5 mM), an inhibitor of prostaglandin synthesis, and direct measurement of prostaglandin E2 by RIA were used. Naproxen completely blocked the inhibition of Na(+)-K(+)-ATPase by kaliuretic peptide, long-acting natriuretic peptide, and vessel dilator suggesting that their inhibition of Na(+)-K(+)-ATPase in both the kidney medulla and cortex are mediated by prostaglandins. Direct measurement of prostaglandin E2 revealed that kaliuretic peptide > long-acting natriuretic peptide > vessel dilator increased prostaglandin E2 synthesis, whereas ANF did not have any effect. Of interest, angiotensin II and ouabain inhibition of Na(+)-K(+)-ATPase were also completely blocked by naproxen.  相似文献   

14.
In patients with type I diabetes mellitus, clinical studies have demonstrated decreased secretion of pancreatic juice by the pancreatic excretory duct system. The cause of this decrease is unknown, but could involve changes in initial signal transduction pathways or one or more of the electrolyte transport components that subserve regulated fluid secretion. We have compared responsiveness to secretin in pancreatic ducts isolated from healthy and diabetic Hartley guinea pigs and also have compared the expression of CFTR and Na+, K(+)-ATPase in these two groups, as the activities of these two proteins are essential for secretion of pancreatic juice. The increases in cyclic AMP levels evoked by exposure to either 0.1 nM or 0.1 microM secretin were not significantly different in pancreatic ducts isolated from healthy and diabetic guinea pigs nor were levels of CFTR or Na+, K(+)-ATPase expression. By contrast, Na+, K(+)-ATPase activity in pancreatic ducts isolated from diabetic guinea pigs was decreased by 70%, suggesting a change in the enzyme's catalytic properties in the diabetic tissues. The observed decrease would be expected to seriously compromise the production of pancreatic juice.  相似文献   

15.
We investigated the relation between cyclic AMP (cAMP) and nitric oxide (NO) production, as well as the effect of NO on Na , K+-ATPase activity in the human neuroblastoma cell line SH-SY5Y. Two cAMP agonists, dibutyryl cAMP (DBC) and beraprost sodium (BPS), increased cAMP accumulation and NO production in a time and dose dependent manner at 50 mmol/l glucose. On the other hand, cellular sorbitol and myo-inositol contents and protein kinase C activity were not altered by DBC or BPS. A specific protein kinase A inhibitor, H-89, suppressed increases in nitrite/nitrate and cyclic GMP (cGMP) and protein kinase A activity stimulated by DBC or BPS. This finding suggests that cAMP stimulates NO production by activating protein kinase A via a pathway different from the sorbitol-myo-inositol-protein kinase C pathway. We observed that an NO donor, sodium nitroprusside, and an NO agonist, L-arginine, enhanced ouabain sensitive Na+, K+-ATPase activity at 50 mmol/l glucose. We also found that a nitric oxide synthase inhibitor, NG-nitro-L-arginine methyl ester (L-NAME), inhibited Na+, K+-ATPase activity at 5 mmol/l glucose, and partially suppressed the enzyme activity stimulated by DBC or BPS. The results of this study suggest that cAMP regulates protein kinase A activity, NO production and ouabain sensitive Na+, K+-ATPase activity in a cascade fashion. The results also suggest that protein kinase A at least partially regulates Na+, K+-ATPase activity without mediation by NO in SH-SY5Y cells. We speculate that cAMP and NO are two important regulatory factors in the pathogenesis of diabetic neuropathy.  相似文献   

16.
Influence of ethanol on cadmium accumulation and its effect on metallothionein induction, binding of cadmium to metallothionein, lipid peroxidation and membrane bound functional enzymes such as (Na(+)-K+)-ATPase and acetylcholinesterase in various regions of adult rat brain was investigated. Ethanol (2 g/kg body wt) and cadmium (1 mg/kg body wt) were administered alone as well as in combination to different groups of rats, i.p., for a period of 1 week. It was observed that cadmium when co-administered with ethanol led to pronounced increase in cadmium accumulation in various regions of the brain. This ethanol induced accumulation of cadmium did not induce the synthesis of metallothionein and also did not bind to this protein in brain and mainly was present as non-metallothionein bound cadmium. It lead to a significant increase in lipid peroxidation and inhibition of membrane bound functional enzymes; (Na(+)-K+)-ATPase and acetylcholinesterase in various regions of the brain indicating functional impairment. The results of the present study imply that ethanol renders the adult brain more susceptible to cadmium neurotoxicity. Corpus striatum and cerebral cortex are more vulnerable regions than other areas of the brain.  相似文献   

17.
The Na-K-ATPase beta 1 subunit acts as the beta subunit for the HK alpha 2 protein in the rat kidney. The colonic H(+)-K(+)-ATPase is a member of the P-type ATPases, and has been shown to contribute to potassium transport by the mammalian kidney and colon. The P-type ATPases often consist of an alpha subunit that contains the catalytic site and a beta subunit that participates in regulation of enzyme activity and targeting of the enzyme to the plasma membrane. The cDNA of the alpha subunit (HK alpha 2) has been cloned and the HK alpha 2 protein has been isolated from the rat kidney and colon. However, a unique beta subunit for the colonic H(+)-K(+)-ATPase has not been described. To determine if one of the known beta subunits present in the kidney might act as the beta subunit for the colonic H(+)-K(+)-ATPase, microsomes enriched in the colonic H(+)-K(+)-ATPase were isolated using an HK alpha 2-specific antibody (AS 31.7) and the Minimac magnetic separation system. Immunoblots of rat kidney microsomal protein isolated with antibody AS 31.7 were probed with antibodies directed against the gastric HK beta subunit, Na(+)-K(+)-ATPase alpha 1, and Na(+)-K(+)-ATPase beta 1 subunits. A band of the appropriate size was detected with Na(+)-K(+)-ATPase beta 1-specific antibodies, but not those directed against HK beta 1. These data suggest that Na(+)-K(+)-ATPase beta 1 could be the beta subunit for the colonic H(+)-K(+)-ATPase in the kidney.  相似文献   

18.
Dopamine decreases tubular sodium reabsorption in part by inhibition of Na+,K(+)-ATPase activity in renal proximal tubules. The signaling mechanism involved in dopamine-mediated inhibition of Na+,K(+)-ATPase is known to be defective in spontaneously hypertensive animals. The present study was designed to evaluate the role of phospholipase A2 (PLA2) and its metabolic pathway in dopamine-induced inhibition of Na+,K(+)-ATPase in renal proximal tubules from Wistar-Kyoto (WKY) rats and spontaneously hypertensive rats (SHR). Renal proximal tubular suspensions were prepared and Na+,K(+)-ATPase activity was measured as ouabain-sensitive adenosine triphosphate hydrolysis. Dopamine inhibited Na+,K(+)-ATPase activity in a concentration (1 nM-10 microM)-dependent manner in WKY rats while it failed to inhibit the enzyme activity in SHR. Dopamine (10 microM)-induced inhibition of Na+,K(+)-ATPase activity in WKY rats was significantly blocked by mepacrine (10 microM), a PLA2 inhibitor, suggesting the involvement of PLA2 in dopamine-mediated inhibition of Na+,K(+)-ATPase. Arachidonic acid (a product released by PLA2 action) inhibited Na+,K(+)-ATPase in a concentration-dependent (1-100 microM) manner in WKY rats while the inhibition in SHR was significantly attenuated (IC50: 7.5 and 80 microM in WKY rats and SHR, respectively). Furthermore, lower concentrations of arachidonic acid stimulated (30% at 1 microM) Na+,K(+)-ATPase activity in SHR. This suggests a defect in the metabolism of arachidonic acid in SHR. Proadifen (10 microM), an inhibitor of cytochrome P-450 monoxygenase (an arachidonic acid metabolizing enzyme) significantly blocked the inhibition produced by arachidonic acid in WKY rats and abolished the difference in arachidonic acid inhibition of Na+,K(+)-ATPase between WKY rats and SHR. These data suggest that PLA2 is involved in dopamine-induced inhibition of Na+,K(+)-ATPase and altered arachidonic acid metabolism may contribute to reduced dopaminergic inhibition of Na+,K(+)-ATPase activity in spontaneously hypertensive rats.  相似文献   

19.
Using an in vitro cell system and Cs+ NMR techniques we were able to show that porcine aortic endothelial cells (PAEC) reduce their Na(+)-K(+)-ATPase activity upon an increase in intracellular cAMP. Reduction in the pump rate was due to phosphorylation of the alpha-subunit of the ATPase as shown by immunoprecipitation. Apart from a pump inhibiton using 8-Br-cAMP and IBMX, we were also able to show that changes in the Na(+)-K(+)-ATPase activity could be mediated by the adenosine-A2 and prostaglandin receptor agonists 5'-N-Ethylcarboxamidoadenosine and Iloprost, respectively. Parallel to a decrease in pump activity we also observed a decrease in intracellular Cs+, indicating opening of K+ channels.  相似文献   

20.
The potent anticancer drug cis-diamminedichloroplatinum (II) (CDDP) interferes early with electrolyte transport by the renal proximal tubule. To study the early effects of platinum coordination complexes on apical Na(+)-coupled transport systems, we examined the effect of increasing concentrations of CDDP, trans-diamminedichloroplatinum (II) (TDDP) and cis-diammine-1,1-cyclobutane-dicarboxylate platinum (II) (CBDCA) on Na(+)-coupled uptake of P(i), methyl-alpha-D-glucopyranoside (MGP) and L-alanine by rabbit proximal tubule cells in primary culture. At 17 microM CDDP and 540 microM CBDCA, 1) cell viability (lactate dehydrogenase release) and ATP content were unaffected, 2) Na(+)-K(+)-ATPase activity was reduced by 40%, 3) Na(+)-coupled uptake of MGP and P(i) was reduced, whereas 4) Na(+)-coupled uptake of alanine rose to twice the control value. Alterations of Na(+)-coupled uptake of P(i), MGP and alanine were due to changes in Km, with no significant change in Vmax. At 333 microM TDDP, Na(+)-dependent P(i) and MGP uptake decreased, whereas Na(+)-independent uptake increased markedly and was associated with a decline in cell viability and ATP content. We conclude that 1) the TDDP-induced decrease in Na+/P(i) and Na+/glucose cotransport was associated with reduced cell viability, 2) both CDDP and CBDCA had different effects on Na+/P(i), Na+/glucose and Na+/alanine cotransport, arguing against an alteration of the Na+ gradient due to reduced Na(+)-K(+)-ATPase activity and 3) CBDCA induced alterations of Na(+)-coupled uptake similar to those of CDDP at concentrations 20 to 30 times higher.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号