首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
研究麻栎叶黄酮的大孔吸附树脂分离纯化工艺,并考察其对α-葡萄糖苷酶活性的抑制作用。通过大孔树脂静态吸附动力学实验,在确定大孔树脂类型的基础上,探索其最佳纯化工艺,结果表明,X-5是适用于麻栎叶黄酮吸附分离的较理想的树脂类型。X-5大孔吸附树脂分离纯化麻栎叶黄酮的最佳条件为:上柱液浓度52.79μg/mL左右,上柱液量为50mL,上柱液流速为0.5mL/min,上柱液pH为5。用95%乙醇进行洗脱,洗脱液流速为1.0mL/min,洗脱液量为30mL。在上述最佳条件下,X-5大孔吸附树脂分离纯化麻栎叶黄酮的纯度达58.33%。麻栎叶黄酮具有很强的抑制α-葡萄糖苷酶活性,IC为13.11μg/mL。  相似文献   

2.
张德谨  陈义勇  胡雅琳  刘祥 《食品与机械》2018,34(2):166-170,194
为了对乌饭树叶黄酮进行纯化,通过动态吸附与解吸试验,探讨上样体积、上样浓度、上样流速、洗脱剂、洗脱流速以及洗脱体积对乌饭树叶黄酮吸附及解吸效果的影响,然后利用蛋白质和多糖的脱除率以及HPLC谱图对纯化效果进行评价。结果表明:NKA-II树脂具有较高的吸附率、解吸率以及较短的吸附时间,确定NKA-II树脂作为乌饭树叶黄酮纯化的柱填料,大孔树脂NKA-II纯化乌饭树叶黄酮最佳工艺条件为:上样体积2.0BV(柱体积),上样浓度0.75mg/mL,上样流速1 mL/min,洗脱剂为50%(体积分数)的乙醇,洗脱流速1.0 mL/min,洗脱体积3BV。在该纯化工艺条件下,HPLC表明纯化后乌饭树叶黄酮纯度明显提高,蛋白质脱除率达76.32%,多糖脱除率达65.45%,黄酮纯度达48.92%。  相似文献   

3.
大孔树脂纯化覆盆子黄酮的研究   总被引:3,自引:1,他引:2       下载免费PDF全文
本实验采用大孔树脂对覆盆子黄酮进行分离纯化,确定其分离纯化条件,树脂的筛选实验结果和静态吸附动态学研究表明:所选的7种大孔树脂,AB-8树脂属于快速吸附树脂,吸附率和解吸率都很高,是理想用于覆盆子黄酮分离纯化的树脂,AB-8树脂动态吸附、解吸实验表明:当上样流速0.2 mL/min,上样浓度1.2 mg/mL,pH=4.5,用2.0 mL/min 70%的乙醇做解吸剂进行解吸时,覆盆子黄酮纯度可达到40.32%,纯度提高7.16倍。  相似文献   

4.
采用大孔树脂对山茱萸黄酮进行分离纯化,确定其分离纯化条件,树脂的筛选实验结果和静态吸附动态学研究表明,所选的4种大孔树脂,AB-8树脂属于快速吸附树脂,吸附率和解吸率都很高,是理想用于山茱萸黄酮分离纯化的树脂,AB-8树脂动态吸附、解吸实验表明,当上样流速2.0mL/min,上样浓度为1.0mg/mL,上样量70mL,用1.5 mL/min的60%的乙醇做解吸剂进行解吸时,山茱萸黄酮纯度可达到67.38%,具有一定的应用价值。  相似文献   

5.
以大孔树脂X-5为吸附试材,探究大孔树脂X-5静态和动态吸附茶皂素的吸附行为,确定X-5纯化茶皂素的动力学模型、吸附等温模型和纯化条件。结果表明:大孔树脂X-5对茶皂素的吸附过程符合一级动力学模型;Freundlich方程对吸附等温过程的拟合度较高。大孔树脂X-5纯化茶皂素的最佳条件(Φ30 mm×300 mm,柱体积60m L)为:上样浓度15.45 mg/mL、上样量60 mL、上样流速1 mL/min,依次用蒸馏水、40%乙醇、80%乙醇进行洗脱,每个梯度洗脱3个柱体积,洗脱流速为2 mL/min。在此条件下茶皂素的纯度由纯化前的27.68%上升至85.40%,回收率为77.13%。  相似文献   

6.
应用大孔吸附树脂对杜仲叶超临界法提取液中的黄酮类物质进行富集和纯化,得到树脂富集杜仲叶黄酮的最优工艺条件。对4 种大孔吸附树脂NKA-2、X-5、D101、AB-8 的吸附和解吸能力进行比较的结果表明:AB-8 树脂的吸附率和解吸率都最高,最佳吸附洗脱工艺为上样液黄酮质量浓度193.92mg/mL、pH2、吸附流速2.6mL/min、洗脱流速1.6mL/min、解吸剂80%乙醇用量30mL。所得洗脱液中黄酮质量分数从纯化前的10.2%可增加到纯化后的42.6% 以上。  相似文献   

7.
对苹果叶多酚的纯化及其抗氧化性进行研究。采用大孔吸附树脂对苹果叶多酚进行初步纯化、Sephadex LH-20 进一步精制,并进行高效液相分析。结果表明X-5 树脂对苹果叶多酚有较好的吸附解吸效果,X-5 树脂纯化苹果叶多酚的条件为上柱液质量浓度3.658mg/mL、上柱液pH3、吸附流速2.0mL/min;以体积分数40% 乙醇为解吸剂,洗脱流速1.0mL/min,洗脱体积4BV。在此条件下纯化后的苹果叶多酚的纯度从10.07% 提高到38.55%;X-5 树脂对苹果叶多酚的吸附为放热过程,吸附过程符合Langmuir 等温吸附模型和Freundlich 等温吸附模型。经过X-5 树脂纯化后的苹果叶多酚对DPPH 自由基和NO2 - ·的清除能力有所增强;苹果叶中根皮苷的含量为2.45%,粗提物经过X-5 树脂纯化和Sephadex LH-20 精制后得到的苹果叶多酚精制品中根皮苷的含量为47.61%,占制品中总多酚的91.51%。  相似文献   

8.
李侠  臧学丽  徐祎博  王大为 《食品科学》2018,39(10):283-290
采用AB-8大孔树脂初步分离纯化绿豆皮黄酮。分别对上样条件和洗脱条件进行优化,考察上样液质量浓度、上样液pH值、上样流速、以及洗脱剂体积分数、洗脱剂用量、洗脱流速对吸附解吸性能的影响,最终确定AB-8大孔树脂的分离纯化绿豆皮黄酮工艺为上样液质量浓度1.5?mg/mL、上样液pH5.0、上样流速1.0?mL/min;洗脱液乙醇体积分数70%、洗脱剂用量225?mL、洗脱流速2.0?mL/min,在此条件下分离纯化,绿豆皮黄酮纯度由27.95%提高到62.38%。经紫外-可见光谱扫描,出现黄酮类化合物特征峰带,经红外光谱扫描,光谱具备黄酮类物质特征官能团,验证了黄酮类物质的存在;利用扫描电镜对纯化前后黄酮类物质进行微观分析,得出被包裹的片状和粉粒状颗粒大部分被释放出来,这可能是导致纯化后黄酮类化合物纯度增高的原因。纯化后的绿豆皮黄酮与粗提物相比具有较高的抗氧化能力。  相似文献   

9.
以雪莲果叶中的酚酸为纯化对象,通过对8种大孔吸附树脂对雪莲果叶酚酸的静态吸附性能研究,筛选出X-5型树脂为适合雪莲果叶酚酸的吸附树脂,并对雪莲果叶酚酸在树脂上的吸附、解吸特性和吸附动力学行为进行了研究.结果表明:X-5树脂对雪莲果叶酚酸的静态吸附率为77.02%,解吸率为91.41%.本实验的纯化工艺条件为:上样液pH3.0,上样液浓度1.384mg/mL,上柱流速1mL/min,解吸剂乙醇浓度50%,洗脱流速1mL/min,解吸率为98.52%,采用上述纯化工艺.可将雪莲果叶酚酸纯度提高到46.8%.  相似文献   

10.
采用大孔树脂吸附法对雪莲果叶黄酮纯化工艺进行研究,选择9种大孔吸附树脂,通过其对雪莲果叶黄酮的静态吸附率和解吸率比较研究,筛选出HPD-100型树脂为较优的雪莲果叶黄酮的吸附树脂。最佳纯化工艺条件为:上样液质量浓度1.806 mg/mL,上样液p H2.0,上柱流速1 mL/min,以60%乙醇溶液为洗脱液,洗脱流速1 mL/min,洗脱体积为114 mL,解吸率为96.56%,该纯化工艺可使雪莲果叶粗提物中黄酮纯度由18.50%提高到56.24%。  相似文献   

11.
焦岩  王振宇 《食品科学》2010,31(16):16-20
目的:研究大孔树脂纯化大果沙棘果渣总黄酮的纯化工艺。方法:对7 种大孔吸附树脂纯化大果沙棘果渣总黄酮的效果进行比较,考察X-5 大孔树脂分离纯化大果沙棘果渣总黄酮的最佳工艺条件。结果:X-5 树脂纯化大果沙棘果渣总黄酮效果最佳,其最适工艺条件为:大果沙棘提取液上样质量浓度2mg/mL,吸附时间2h,用4BV 蒸馏水洗脱除去杂质,然后用4BV 70% 乙醇洗脱,树脂可重复利用5 次以上,此条件下纯化后总黄酮回收率最高为86.78%,纯度可由原来的11.6% 提高到34.1%。  相似文献   

12.
D-101大孔吸附树脂分离纯化橘皮中的黄酮类物质   总被引:6,自引:0,他引:6  
目的:研究D-101大孔吸附树脂分离纯化橘皮黄酮类物质的工艺条件。方法:采用静态和动态吸附-解吸附两种方法,以黄酮类物质吸附率和解吸附率为评价指标,考察橘皮提取液pH值、吸附液料比、静置吸附时间、洗脱液种类和洗脱液料比等影响因素。结果:D-101大孔吸附树脂分离纯化橘皮黄酮类物质的最佳工艺条件为提取液pH4.43,吸附液料比15:1(黄酮类物质溶液:大孔吸附树脂,mL/g)、静置吸附时间90min、洗脱液为95%乙醇溶液、洗脱液料比25:1(95%乙醇溶液:大孔吸附树脂,mL/g)。结论:该方法简单、可行,能够用来分离纯化橘皮中黄酮类物质。  相似文献   

13.
利用大孔树脂对粘性红圆酵母RM-1产β-胡萝卜素进行分离纯化,得到最佳的吸附和解吸条件。结果表明,最佳吸附树脂为X-5树脂,最佳洗脱剂为乙醚,最佳分离纯化工艺参数为上样质量浓度111.82μg/mL、吸附流速1mL/min、洗脱流速0.5mL/min。经纯化,β-胡萝卜素纯度达到33.29%,与未纯化相比,提高了6.87倍。  相似文献   

14.
AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮   总被引:3,自引:0,他引:3  
李超  王乃馨  郑义  崔珏  陈华 《食品科学》2011,32(16):31-35
目的:研究AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮的工艺参数,为工业化生产提供依据。方法:通过静态、动态相结合的方法,确定最佳工艺参数。结果:最佳工艺参数为上样液pH4.5、上样液质量浓度1.00mg/mL、上样液流速80mL/h、洗脱液为体积分数70%乙醇溶液、洗脱液流速40mL/h、洗脱液用量60mL,分离纯化后的总黄酮产品纯度可达66.16%。结论:采用AB-8型大孔吸附树脂分离纯化大叶金花草总黄酮操作简单、安全、成本低廉,有较高的应用价值。  相似文献   

15.
目的:研究AB-8大孔吸附树脂精制芦柑皮总黄酮的工艺条件及芦柑皮黄酮类化合物的分离纯化。方法:采用AB-8大孔吸附树脂动态法精制芦柑皮总黄酮,考察上样液总黄酮质量浓度、pH值、上样流速、洗脱液乙醇体积分数对吸附解吸性能的影响;然后将精制的芦柑皮总黄酮经硅胶柱层析、半制备高效液相等技术进行分离纯化,并根据理化性质和波谱数据鉴定化学结构。结果:AB-8大孔树脂精制芦柑皮总黄酮的最佳工艺条件为上样液总黄酮质量浓度3.03 mg/mL、上样液pH 3.0、上样流速3.0 BV/h、洗脱液乙醇体积分数为90%,最优条件下可使芦柑皮总黄酮的纯度从17.8%提高到63.1%;此外,从精制的芦柑皮黄酮中分离到8 个黄酮类化合物,分别鉴定为:橘皮素、川陈皮素、4’,5,7,8-四甲氧基黄酮、5-去甲基-橘皮素、橙黄酮、橙浸膏、柚皮苷、橙皮苷。结论:AB-8大孔树脂能很好地富集纯化芦柑皮总黄酮,该法简单、可行;从精制的芦柑皮黄酮中分离到8 个黄酮类化合物,其中,4’,5,7,8-四甲氧基黄酮、5-去甲基-橘皮素、橙浸膏、柚皮苷、橙皮苷首次从芦柑皮中分得。  相似文献   

16.
竹叶黄酮纯化中吸附剂的优选及解析特性研究   总被引:1,自引:0,他引:1  
游辉  孙爱东  唐玲  潘娜  陈健 《食品科学》2010,31(8):24-27
选择7 种大孔吸附树脂,通过研究其对竹叶黄酮的吸附率和解吸率,筛选出较优的竹叶黄酮吸附剂。结果表明:AB-8 型大孔树脂吸附量大,易于洗脱,纯化分离效果好;获得竹叶黄酮最佳分离纯化工艺参数为上柱溶液pH5.0,以1.0mL/min 的吸附流速上样,用4 倍床体积的60% 乙醇溶液以1.5mL/min 洗脱速率洗脱。该工艺生产的竹叶黄酮纯度达到54.16%。  相似文献   

17.
马娇  高蕾  施月  蔡冬宝  熊双丽 《食品工业科技》2019,40(4):207-213,219
通过比较D-101、AB-8、X-5、DA-201 4种大孔吸附树脂对景天三七总黄酮的静态吸附和解吸附性能,筛选出最适合的树脂及最佳静态吸附-解吸附条件。对纯化后的总黄酮进行初步鉴定,并考察了纯化前后的体外抗氧化效果。结果表明,DA-201型大孔吸附树脂的吸附和解吸附效果最好,其最佳静态吸附分离工艺参数为:吸附时间为1 h,样液质量浓度为0.7 mg/mL,上样液pH为3.0,解吸附乙醇浓度为90%。在该条件下静态吸附率为81.05%,解吸附率为86.05%。纯化后,总黄酮的纯度由19.38%提高到43.78%,其羟自由基、DPPH自由基清除率的IC50分别由69.47、44.02 μg/mL下降到43.25、30.16 μg/mL。另外初步判断纯化后的景天三七总黄酮可能含有水飞蓟素类、金丝桃苷类、山奈酚类、槲皮素类化合物。  相似文献   

18.
目的优化大孔吸附树脂分离纯化葡萄叶黄酮类化合物的工艺条件。方法采用分光光度法,以芦丁为标准品,采用硝酸铝显色法测定总黄酮含量;以葡萄叶总黄酮的含量、吸附量和解吸率为考察指标,通过静态及动态实验,筛选出理想的吸附树脂,并通过单因素试验确定了葡萄叶总黄酮富集分离的优选操作条件。结果 D-101树脂是吸附葡萄叶提取液中总黄酮较理想的树脂,对其优化的工艺参数为:最佳吸附p H值:p H=3,洗脱剂浓度:70%的乙醇,最佳上样流速:0.8 m L/min,最佳上样液浓度:65.65 mg/L,最佳解吸流速:0.8m L/min。结论 D-101树脂对葡萄叶总黄酮的吸附量大,解吸容易,环境友好,确定的吸附与洗脱条件简单可行,此工艺具有良好的产业化前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号