首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TPA和EG连续生产PET的第一酯化反应器操作模拟   总被引:3,自引:0,他引:3  
对乙二醇(EG)和对苯二甲酸(TPA)连续生产对苯二甲酸乙二酯(PET)的第一酯化反应器进行了数学模拟。数学模型中包括了反应动力学方程、气液平衡和气液传质方程,使模拟结果接近于工厂实践。此外对不同停留时间、不同的反应器操作温度及压力、不同的进料 EG/TPA 的 mol比,进行了模拟计算,得出了反应器出口各种产物的组成随操作参数的变化,并对各操作参数的范围和对反应的影响进行了评述。  相似文献   

2.
In this study we propose a method to identify the kinetics of direction esterification reactions for polyethylene terephthalate (PET) based on a genetic algorithm. The reaction rate parameters could be identified successfully by using a genetic algorithm and plant data. The effects of key operating variables (temperature, pressure, monomer feed ratio and residence time) on the reactor performance were also investigated. It was observed that the reactor performance strongly depends on the degree of dissolution of the solid terephthalic acid (TPA) in the reaction mixtures.  相似文献   

3.
A mathematical model for a continuous direct esterification reactor has been developed. The solid-liquid equilibrium of terephthalic acid (TPA) was considered in our modeling, and the characteristic dissolution time, an adjustable parameter, was introduced to account for the mass-transfer effect in the dissolution of TPA. The effects of the characteristic dissolution time, monomer feed ratio, temperature, and pressure on the reactor performance at different residence times were investigated through simulation. It was observed that the behavior of the first reactor strongly depends on whether the solid TPA is completely dissolved in the reaction mixtures. From the dynamic simulations, it was found that a sudden change in the operating conditions affects the ethylene glycol (EG) vapor flow rate instantly. For the esterification process having two reactors in series, the strategy for time distribution and recycling of EG is also discussed. © 1997 John Wiley & Sons, Inc.  相似文献   

4.
The pyrolysis process of polystyrene (PS) has been investigated to find optimal temperature profiles which minimize the reaction time and the reaction energy required for a given conversion in a batch reactor. Assuming that the fragmentation of PS in pyrolysis is described by the mechanism of random and/or specific degradations, we used a continuous kinetic model for solving three moment equations to determine the transient change of molecular weight distributions (MWD) of the polymers. We then converted this independent-variable minimization problem using a coordinate transformation to a dependent-variable minimization problem that yields the optimal temperature profiles as its solution. The optimization results obtained in this study encompass the cases of different objective functions which cover minimum reaction time, minimum energy consumed, or any combination of these. It has turned out that maintaining the reaction temperature constant at an optimal level is the best solution in this optimization problem. An economic cost function also has been introduced as the third objective function to be minimized in addition to the reaction time and the reaction energy. This new function can serve as a convenient measure to judge the performance of the pyrolysis process minimizing the involved cost.  相似文献   

5.
PET酯化反应过程中的二甘醇生成   总被引:1,自引:0,他引:1  
二甘醇(DEG)在聚对苯二甲酸乙二酯(PET)切片中的含量是PET的重要质量指标.在生产过程中必须严格控制。利用PET的工艺模拟模型,计算并分析了酯化反应器内DEG生成量及其影响因素,结果表明,第一酯化反应器出口的DEG质量分数为0.732%;第二酯化反应器出口的DEG质量分数为0.851%;影响DEG生成的反应因素按影响程度大小依次为:温度、配比、时间和压力。  相似文献   

6.
The dynamics of free radical polymerization of styrene and on-line control of temperature in a cooling jacketed batch polymerization reactor is investigated. The benzoyl peroxide initiator is introduced into the reactor once at the beginning of the reaction to obtain the desired monomer conversion and the desired average chain length in a minimum reaction time. The optimal constant set temperature, which is generally realized in industrial applications, and the set profile are used as two different optimal operating conditions. The temperature control of the polymerization reactor is achieved experimentally and theoretically. The control of nonlinear systems has progressed considerably, and various nonlinear process model based control techniques have appeared in the literature. The problem is how to tune the controller in order to obtain comparable closed loop responses. Generic model control (GMC) is applied and the performance of the control results are compared with the previously published control results.  相似文献   

7.
聚酯装置酯化生产过程动态模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
罗娜  叶贞成  钟伟民  钱锋 《化工学报》2010,61(8):1933-1941
动态模型是进行生产过程动态优化的基础。本文采用链段法建立了聚酯装置酯化生产过程反应器和工艺塔相互影响的动态模型,分析了基本控制系统作用下过程操作工况的动态阶跃响应特性。模拟结果表明,酯化反应器进料摩尔配比及反应器温度、压力、液位的调整显著影响了酯化过程气相流的变化,且对反应产物中端羧基含量和聚合度等指标的响应比较灵敏;控制系统对稳定酯化生产过程操作起着显著的作用。  相似文献   

8.
BACKGROUND: Various methods, such as glycolysis, methanolysis, and hydrolysis with supercritical water, have been investigated for chemical recycling of poly(ethylene terephthalate) (PET), which is used in large quantities for beverage containers. However, a more effective process is needed. RESULTS: PET was depolymerized in aqueous ammonia in a batch reactor and a semi‐batch reactor over a temperature range 463 to 573 K, at a pressure 10 MPa, and with up to 3 mol L?1 ammonia. Total organic carbon in the product solution and yields of the major products such as terephthalic acid (TPA) and ethylene glycol (EG) were measured. The PET pellet sample was thoroughly solubilized in aqueous ammonia under hydrothermal conditions, and more than 90% of the initial PET samples were recovered as TPA + EG on a carbon weight basis. Depolymerization rates were represented by 2/3‐order reaction kinetics with respect to unreacted PET, where the reaction took place on the PET pellet surface. The rate increased slightly with increasing ammonia concentration. CONCLUSION: Ammonia was effective for depolymerization of PET, allowing the recovery of TPA and EG under hydrothermal conditions. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
Chemical recycling of polyethylene terephthalate (PET) to produce terephthalic acid (TPA) was studied using in situ hydrolysis with sodium methoxide in methanol and dimethyl sulfoxide (DMSO) as solvent under microwave irradiation. The microwave-assisted reaction was carried out at different temperatures, and reaction time between 5 to 30 min. High degrees of depolymerization were examined at temperature near 70°C at microwave power 300 W. The reaction was carried out in a sealed microwave reactor in which the time and temperature were controlled and recorded. The products were mainly monomers such as TPA and ethylene glycol (EG) which were isolated and purified for further analysis. Monomethyl terephthalate, dimethyl terephthalate, and terephthalic acid were formed initially then converted to TPA as a single monomer product. Purified, TPA was analyzed and identified by NMR, TGA, DSC and FTIR. It was observed that the reaction greatly depends on the amount of sodium methoxide, the volume of methanol and DMSO used, the reaction time, and temperature. Compared to conventional heating methods, the time needed to achieve complete degradation of PET was significantly reduced to 5 min by using microwave irradiation and sodium methoxide catalyst. This has led to substantial saving in energy and cost supporting the conclusion that this proposed recycling process is very beneficial for the recycling of PET wastes.  相似文献   

10.
针对大型连续PTA直接酯化法PET工艺过程装置,以Aspen Plus和Polymers Plus为模型开发工具,建立了以反应和传质过程机理为基础的稳态模型。结果表明:该模型中包括了酯化反应、缩聚反应、二甘醇生成反应、链降解反应和乙醛生成等主副反应,且考虑了端羧基对酯化反应的自催化效应;更重要的是模型考虑了酯化阶段PTA在酯化反应器中的溶解过程和终缩聚阶段小分子的脱挥,并建立了小分子脱挥的传质系数与缩聚反应器内聚合度、黏度、温度和搅拌器转速等的关联;在此模型基础上模拟研究了第一酯化反应操作温度对各反应器出口指标的影响,指出酯化段的酯化率有一个适宜的控制范围。  相似文献   

11.
反应器网络综合三分布参数通用模型   总被引:7,自引:0,他引:7       下载免费PDF全文
提出了一种应用于反应器网络综合的三分布参数通用模型 .3个分布参数分别是侧线进料、侧线循环和侧线采出参数 ,这些参数能影响反应器网络内部的浓度和停留时间分布 ,所以由它们构成的通用模型具有简捷有效的特点 .基于此模型可将反应器网络集成转化成一个优化问题 ,通过有限元正交配置将原来含有微分方程的优化模型转化为非线性优化问题 ,优化计算后得到最优分布参数 .从案例研究可以看出 ,侧线进料、循环和采出策略能较全面地反映在不同动力学和优化目标函数下的最优反应器网络特征 ,并进而简化为工业可行的反应器网络  相似文献   

12.
A cocurrent tubular reactor with temperature profile control and recycle of moving deactivating catalyst has been investigated. For the temperature-dependent catalyst deactivation, the optimization problem has been formulated in which a maximum of a profit flux is achieved by the best choice of temperature profile and residence time of reactants for the set of catalytic reactions A+B→R and R+B→S with desired product R, the rates of reactions have been described separately for every reagent by the expressions containing (temperature dependent) reaction rate constants, concentrations of reagents, catalyst activity, as well as catalyst concentration in the reacting suspension and a measure of the slip between reagents and solid catalyst particles. The algorithms of maximum principle have been used for optimization. The optimal solutions show that a shape of the optimal temperature profile depends on the mutual relations between activation energies of reactions and catalyst deactivation. It has been proved that the optimal temperature profile is a result of the compromise between the overall production rate of desired reagent R (production rate in the first reaction minus disappearance rate in the second one), necessity of saving of reagents residence time (reactor volume) and necessity of saving catalyst; the most important influence on the optimal temperature profile is associated with necessity of saving the catalyst. When catalyst recycle ratio increases (mean number of catalyst particles residing in reactor increases), optimal temperatures save the catalyst, as the optimal profile is shifted in direction of lower temperatures. The same is observed when catalyst slip increases (catalyst residence time in reactor increases). Despite of variation in the catalyst concentration the optimal profile is practically the same because the decay rate is affected only by instantaneous activity of catalyst. When reactor unit volume price decreases, catalyst residence time increases, whereas optimal temperature profile is shifted to lower temperatures. When economic value of unit activity of outlet catalyst increases (catalyst with a residual activity still has an economic value), catalyst saving should be more and more intense. As far as possible, the optimal profile is shifted in direction of lower temperatures, whereas the optimal residence time is still the same. Then the optimal profile is isothermal at the level of minimum allowable temperature, whereas the catalyst is saved as its residence time in reactor decreases.  相似文献   

13.
Simulations were carried out with a continuous recycle esterification model for the terephthalic acid–ethylene glycol (TPA–EG) system proposed previously. The influence of reaction temperatures, recycle ratios, and residence times on the oligomer characteristics was examined and the following results were obtained: (1) The main reactions proceed more under higher reaction temperatures, but the side reactions on diethylene glycol (DEG) proceed further than do the main reactions. (2) The higher residence time ratio of the first reactor to the total results in the proceeding of esterifications, which becomes remarkable as the temperature becomes high. (3) As the recycle ratio becomes high, the esterfications proceed, but in the very high degree of esterification, the tendency is reversed. (4) The characteristics of oligomer are almost the same at the same degree of esterification, independent of the reaction conditions. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
In the conventional polyethylene terephthalate (PET) pyrolysis process, the formation of char by excessive pyrolysis is mainly due to the dehydration mechanism, so water is considered an auxiliary agent that can effectively inhibit excessive pyrolysis. The preparation of terephthalic acid (TPA) by steam-assisted pyrolysis of PET is an effective method to achieve closed-loop recycling of waste PET. To ensure that the reaction is mild enough to reduce excessive cracking products such as char and benzoic acid and thus increase the yield of TPA, it is critical to reduce the reaction rate while maintaining a sufficient excess steam coefficient. Under the optimal operating conditions, when the temperature rise rate was 0.5 °C min−1 and the excess steam coefficient was 150, the yield of TPA was 72.5 wt.%, and the purity was 85.5%. Noticeably, the steam-assisted pyrolysis system is a heterogeneous reaction system whose reaction mechanism is different from the conventional hydrolysis and pyrolysis reactions and has a unique reaction path. The mechanistic study indicates that, in addition to the thermal cracking of PET molecules occurring in conventional pyrolysis, hydroxyl attack and transfer, and supplementation of benzene ring hydrogen also occur between water and intermediate molecules. Meanwhile, it has also been proven that the intermolecular hydrogen transfer between intermediate molecules and water molecules is the key to reduce the intensity of the reaction and inhibit the formation of char. This discovery illustrates the mechanism of the reaction between water and PET in the steam-assisted pyrolysis process in the fixed pyrolyzer and justifies the distinction between it and the pyrolysis and hydrolysis processes of PET. It provides a theoretical basis for optimizing the pyrolysis process of PET, which is essential for the industrialization of TPA preparation from PET steam-assisted pyrolysis.  相似文献   

15.
周子洪 《合成纤维》1991,20(2):22-24,30
我们在二升间歇装置中,对高纯度对苯二甲酸(TPA)和乙二醇(EG)直接酯化缩聚(简称TPA法)时的酯化温度、酯化压力、酯化时间及醚键抑止剂的添加量,作了一系列的试验。其结果表明:采用TPA法制备PET主要在酯化阶段生成副产物DEG,其量占总量80%。其次是缩聚阶段;提高酯化反应速度,宜用加压法来实现,一般反应压力4.0×10~5Pa、反应温度250℃;及时除去反应系统中多余的EG;添加适量的醚键抑止剂可有效地降低DEG的生成。  相似文献   

16.
采用对苯二甲酸(TPA)和乙二醇(EG)为原料,以自制的β-二酮铝和β-二酮酯铝为催化剂经酯化、缩聚,制得聚对苯二甲酸乙二醇酯(PET).探讨了反应条件对合成反应的影响.结果表明:β-二酮酯铝和乙酰丙酮铝优于其他β-二酮铝.EG与TPA的摩尔比为1.2∶1、催化剂的用量为0.5%(与TPA的摩尔比),酯化反应温度为26...  相似文献   

17.
渗透汽化-酯化反应耦联膜过程动力学模型   总被引:8,自引:0,他引:8       下载免费PDF全文
李雪辉  王乐夫  孙琳 《化工学报》2000,51(2):210-214
建立了渗透汽化 -酯化反应耦联复合膜反应器过程动力学模型及测量复合膜渗透率的方法 .该动力学模型较系统地考虑了复合膜反应器中可能影响酯化反应化学平衡移动的各种因素 .研究结果表明 ,模型的模拟结果能很好地与实验结果相吻合 .  相似文献   

18.
对聚酯装置酯化蒸气的热量进行了计算,讨论了聚酯装置酯化蒸气在供暖和制冷系统中的应用,对在生产过程中所出现的问题,如酯化蒸气发生量异常波动、热水温度偏高对装置的影响等进行了分析,提出了相应的解决办法。结果表明:通过装置改造,新增2台酯化蒸气换热器,与采暖水换热,由酯化蒸气换热器向供暖系统或溴化锂制冷机提供热水即可实现余热的回收利用;酯化蒸气综合利用的工艺流程简单,实施酯化蒸气供暖和制冷工艺后,聚酯酯化系统运行良好,2010年减少0.8 MPa蒸汽消牦21.3 kt,取得了明显的节能效果。  相似文献   

19.
Batch polymerization reactors commonly use optimal temperature control as the strategic operation parameter. This strategy allows for better operability and a more economic process. The main objective of the batch polymerization reactor control is to obtain acceptable product quality. Direct measurement of polymer quality is rarely achievable, which makes the online control of the reactor difficult. Temperature is the most controllable operational variable in the polymer reactor, which is seen to have a direct effect on the polymer properties. Temperature is chosen as the set point by using either the isothermal temperature or optimal temperature trajectory. Online control of the optimal temperature profile of a bench‐scale batch polymerization reactor was experimentally investigated in this study. The temperature trajectory was used as the target for controllers to follow. The time‐profile temperature was obtained with the objective of obtaining the desired conversion and number‐average chain length within the minimum time. Two advanced controls of fuzzy logic control and generic model control were applied to the polymer reactor. A comparison of the controllers reveals that both performed better than conventional controllers.  相似文献   

20.
Taking into account the presence of evaporable components in the reaction mixture, a mathematical model is suggested for the monomerization stage of poly(ethylene terephthalate) (PET) production. The model is analyzed by numerical methods. The problem of the monomerization-stage optimization is formulated as a multiobjective problem. An optimal profile of temperature for a cascade of reactors is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号