首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《分离科学与技术》2012,47(2):341-357
Abstract

The reduction of carbon dioxide emission from flue gases can be achieved using post‐combustion technologies, such as adsorption employing efficient solid sorbents. In this work, the adsorption of CO2 on hydrotalcite‐like Al‐Mg compounds partially carbonated was studied using dynamic and static methods. The breakthrough curves were obtained at different flow gas rates in the range 60 to 100 mL/min and total pressure 1.0 atm. Different mixtures of CO2 diluted in helium were used (3–20% v/v) at temperatures in the range 29 to 350°C. The experimental equilibrium data were described according to a Langmuir‐like equation. The capacity of adsorption presented a weak dependence on the temperature due to opposite effects of increasing of entropy and increasing of MgO (non‐carbonated) content in the adsorbent at high temperatures. The linear driving force model was suitable to describe the breakthrough curves. The dispersion and mass transfer coefficients were calculated by theoretical correlations and the model described quite very well the adsorption of CO2 on hydrotalcite‐like compounds in a fixed bed in any temperature.  相似文献   

2.
This study reports a new method of producing high-purity monoacylglycerols (MAGs) by glycerolysis of fully hydrogenated palm oil (FHPO) catalyzed by hydrotalcite loaded with K2CO3 (K2CO3/HT). The effects of reaction temperature, reaction time, catalyst (K2CO3/HT) loading, and mass ratio of FHPO to glycerol on glycerolysis were investigated. The selected conditions included a reaction temperature of 200°C, K2CO3/HT loading at 0.8 wt.% (FHPO mass), a 5:2 mass ratio of FHPO to glycerol, and a reaction time of 2 h. Under these selected conditions, the yield of MAGs in the acylglycerol phase reached 46.8 wt.%. A two-stage molecular distillation was introduced to purify MAGs, and the final MAG product was obtained with a purity of 96.6 wt.% and a recovery of 96.8%. Furthermore, the recycled K2CO3/HT was reactivated with restored catalytic efficiency through impregnation, carbonation, and recalcination.  相似文献   

3.
The aim of this study was to verify the ability of nickel-impregnated palm shell activated carbon (PSAC) for CO2 adsorption and compare its performance with the chemically and physically activated PSAC. Sodium hydroxide and CO2 were used as activating agents for chemical and physical activation, respectively. Nickel nitrate hexahydrate (Ni(NO3)2·6H2O) was used as a precursor for metal impregnation. The effect of different chemical loadings (NaOH: 20–50 wt%), metal impregnation (Ni(NO3)2·6H2O: 16–28 wt%), and heat treatment time (1–4 h) was studied as parameters. Adsorption capacity was calculated using breakthrough graphs. The effect of humidity on CO2 adsorption and desorption of CO2 was also investigated in this study. The results revealed that chemically modified PSAC yields the highest adsorption capacity (48.2 mg/g) compared to other methods of activation. Interestingly, it was found that the adsorption capacity of nickel-impregnated PSAC was similar to other types of metal-impregnated activated carbon. Humidity gave a negative effect on CO2 adsorption. In summary, results showed that chemical activation is an efficient technique to modify PSAC for CO2 adsorption.  相似文献   

4.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

5.
Hydrotalcite was synthesized from hydroxide-form precursors to prepare a novel high-temperature CO2 sorbent, and the effect of Mg/Al ratio on CO2 sorption was studied. To enhance the CO2 sorption capacity of the sorbent, K2CO3 was coprecipitated during the synthetic reaction. X-ray diffraction analysis indicated that the prepared samples had a well-defined crystalline hydrotalcite structure, and confirmed that K2CO3 was successfully coprecipitated in the samples. The morphology of the hydrotalcite was confirmed by scanning electron microscopy, and N2 adsorption analysis was used to estimate its surface area and pore volume. In addition, thermogravimetric analysis was used to measure its CO2 sorption capacity, and the results revealed that the Mg: Al: K2CO3 ratio used in the preparation has an optimum value for maximum CO2 sorption capacity.  相似文献   

6.
Ni supported catalysts were prepared by the solid phase crystallization (spc) method starting from hydrotalcite (HT) anionic clay based on [Mg6Al2(OH)16CO3 2–]H2O as the precursor. The precursors were prepared by the co-precipitation method from nitrates of the metal components, and then thermally decomposed, in situ reduced to form Ni supported catalysts (spc-Ni/Mg–Al) and used for the CO2 reforming of CH4 to synthesis gas. Ni2+ can well replace the Mg2+ site in the hydrotalcite, resulting in the formation of highly dispersed Ni metal particles on spc-Ni/Mg–Al. The spc-catalyst thus prepared showed higher activity than those prepared by the conventional impregnation (imp) method such as Ni/-Al2O3 and Ni/MgO. When Ni was supported by impregnation of Mg–Al mixed oxide prepared from Mg–Al HT, the activity of imp-Ni/Mg–Al thus prepared was not so low as those of Ni/-Al2O3 and Ni/MgO but close to that of spc-Ni/Mg–Al. The relatively high activity of imp-Ni/Mg–Al may be due to the regeneration of the Mg–Al HT phase from the mixed oxide during the preparation, resulting in an occurring of the incorporation of Ni2+ in the Mg2+ site in the HT as seen in the spc-method. Such an effect may give rise to the formation of highly dispersed Ni metal species and afford high activity on the imp-Ni/Mg–Al.  相似文献   

7.
CO2 capture using some fly ash-derived carbon materials   总被引:1,自引:0,他引:1  
A. Arenillas 《Fuel》2005,84(17):2204-2210
Adsorption is considered to be one of the more promising technologies for capturing CO2 from flue gases. For post-combustion capture, the success of such an approach is however dependent on the development of an adsorbent that can operate competitively at relatively high temperatures. In this work, low cost carbon materials derived from fly ash, are presented as effective CO2 sorbents through impregnation these with organic bases, for example, polyethylenimine aided by polyethylene glycol. The results show that for samples derived from a fly ash carbon concentrate, the CO2 adsorption capacities were relatively high (up to 4.5 wt%) especially at high temperatures (75 °C), where commercial active carbons relying on physi-sorption have low capacities. The addition of PEG improves the adsorption capacity and reduces the time taken for the sample to reach the equilibrium. No CO2 seems to remain after desorption, suggesting that the process is fully reversible.  相似文献   

8.
CO2 capture by adsorption with nitrogen enriched carbons   总被引:2,自引:0,他引:2  
M.G. Plaza 《Fuel》2007,86(14):2204-2212
The success of CO2 capture with solid sorbents is dependent on the development of a low cost sorbent with high CO2 selectivity and adsorption capacity. Immobilised amines are expected to offer the benefits of liquid amines in the typical absorption process, with the added advantages that solids are easy to handle and that they do not give rise to corrosion problems. In this work, different alkylamines were evaluated as a potential source of basic sites for CO2 capture, and a commercial activated carbon was used as a preliminary support in order to study the effect of the impregnation. The amine coating increased the basicity and nitrogen content of the carbon. However, it drastically reduced the microporous volume of the activated carbon, which is chiefly responsible for CO2 physisorption, thus decreasing the capacity of raw carbon at room temperature.  相似文献   

9.
A series of solid amine adsorbents were prepared by the template method with ion-exchange resin (D001) as the carrier and polyethyleneimine (PEI) as the modifier. The absorbents were characterized by energy disperse spectroscopy (EDS), scanning electron microscope (SEM), N2 adsorption–desorption, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) techniques. The effects of PEI loading, adsorption temperature and influent velocities on CO2 adsorption capacity in a fixed-bed reactor were investigated. The results show that the solid amine adsorbent prepared by the template method had a better PEI dispersion, stability and CO2 adsorption capacity. The maximum CO2 adsorption capacity was 3.98 mmol·g?1 when PEI loading was 30%, the adsorption temperature was 65°C and the influent velocity was 40 mL·min?1. The CO2 adsorption capacity decreased only by 9.50% after 10 cycles of adsorption–desorption tests. The study of kinetics indicates that both chemical adsorption and physical adsorption occurred in the CO2 adsorption process. The CO2 adsorption process included fast breakthrough adsorption and gradually approaching equilibrium stage. The particle internal diffusion process was the control step for CO2 adsorption.  相似文献   

10.
Mesocellular silica foam (MSU-F) supports were functionalized via wet impregnation with various amine and alcohol compounds for use as high-capacity adsorbents for CO2 separation. The effect of the amino, hydroxyl, and ether functional groups in the impregnating mixture on the CO2 adsorption capacity was investigated. Chemical adsorption was controlled by the composition of the compounds, and the blending effect on the adsorption performance was dependent on the temperature. MSU-F (30 wt.%) impregnated with a mixture of tetraethylenepentamine (40 wt.%) and aminoethylethanolamine (30 wt.%) showed a high adsorption capacity of 5.4 mmol/g at 333 K for 15 kPa CO2.  相似文献   

11.
The use of materials based on hydrotalcites as NOx storage/reduction (NSR) catalysts has been investigated, examining their activity at low temperature and their resistance to poisons such as H2O and SO2. The results obtained show that catalysts derived from Mg/Al hydrotalcites containing copper or cobalt is active at low temperatures, specially the samples containing 10 or 15% of Co. The addition of 1 wt% of transition metals with redox properties such as Pt, Pd, V and Ru to the hydrotalcite increases its activity because the combination of the redox properties of these metals and the acid-base properties of the hydrotalcite. The best results were obtained with the catalyst derived from a hydrotalcite with a molar ratio Co/Mg/Al = 15/60/25 and containing 1 wt% V. This material shows a higher activity, at low temperatures and in the presence of H2O and SO2, than a Pt–Ba/Al2O3 reference catalyst.  相似文献   

12.
This study investigates the adsorption performance of a number of absorbents prepared by incipient wetness impregnation of 3.85 wt% Fe, Co, Ni, Mn, Co and Ce oxides on HZSM-5 for the removal of trace NO (150–200 ppm) from a CO2 stream to produce food-grade CO2. The adsorbents were characterized using X-ray diffraction, X-ray fluorescence, and N2 adsorption with their performances evaluated in a fixed-bed flow system. The investigations revealed NO removal of better than 0.1 ppm from the CO2 stream. The breakthrough capacities of the adsorbents for NO removal in the presence of O2 were found to significantly increase. The converse was observed in the case of NO adsorption selectivity. Co/HZSM-5(25) was found to be the best adsorbent under all the conditions tested producing CO2 purities of better than 99.9999%. This is significantly higher than for Fe–Mn mixed oxides, claimed to be the best NO adsorbent reported in the literature for CO2 purification.  相似文献   

13.
A series of triptycene-based porous polyimides (STPIs) were synthesized by condensation polymerizations. The structure and properties of these STPIs were characterized by IR, solid 13C NMR, powder XRD, SEM, TEM and gas absorption. As STPI-2 with the high thermal stability, they display excellent adsorption ability to CO2 uptake capacity of 14.6 wt% (273 K), and exhibit the high selectivity of CO2/N2 of 107.  相似文献   

14.
Adsorptive separation of CH4/CO2 mixtures was studied using a fixed-bed packed with MIL-53(Al) MOF pellets. Such pellets of MIL-53(Al) were produced using a polyvinyl alcohol binder. As revealed by N2 adsorption isotherms, the use of polyvinyl alcohol as binder results in a loss in overall capacity of 32%. Separations of binary mixtures in breakthrough experiments were successfully performed at pressures varying between 1 and 8 bar and different mixture compositions. The binary adsorption isotherms reveal a preferential adsorption of CO2 compared to CH4 over the whole pressure and concentration range. The separation selectivity was affected by total pressure; below 5 bar, a constant selectivity, with an average separation factor of about 7 was observed. Above 5 bar, the average separation factor decreases to about 4. The adsorption selectivity is affected by breathing of the framework and specific interaction of CO2 with framework hydroxyl groups. CO2 desorption can be realised by mild thermal treatment.  相似文献   

15.
混合胺改性SBA-15的二氧化碳吸附特性   总被引:2,自引:2,他引:2  
靖宇  韦力  王运东  于燕梅 《化工学报》2014,65(1):328-336
为实现廉价高效的二氧化碳捕集,新型燃烧后CO2捕集固体吸附材料的设计和开发具有重要的研究意义。为提高CO2吸附量,胺功能化改性吸附剂的方法主要有湿浸渍和表面嫁接。基于此,提出了“混合胺”修饰的概念,把湿浸渍和表面嫁接两种改性技术结合起来。把3-氨丙基三甲氧基硅烷(APTS)嫁接到分子筛SBA-15孔道表面,再把聚乙烯亚胺(PEI)浸渍到载体孔道的间隙,制备出高密度胺功能化的CO2吸附剂。主要考察了不同含量的PEI和APTS功能化SBA-15的结构性能、CO2吸附量及胺吸附效率。CO2吸附结果表明,混合胺功能化SBA-15吸附主要依赖于动力学扩散。其中,SBA-15-(APTS-0.5-PEI-50),SBA-15-(APTS-1.0-PEI-50)和SBA-15-(APTS-2.0-PEI-30)在75℃时具有很好的吸附潜力。混合胺功能化SBA-15的胺吸附效率介于单纯嫁接和单纯浸渍的胺功能化SBA-15之间。  相似文献   

16.
赵传文  陈晓平  赵长遂 《化工学报》2009,60(7):1800-1805
The structure identification and carbonation characteristics of several potassium-based supported sorbents for CO2 capture were investigated with TGA,XRD,XRF,SEM and N2 adsorption method.Potassium-based sorbents were prepared by impregnation with potassium carbonate on supports,such as cocoanut activated charcoal(AC1),coal active carbon(AC2),silica gel(SG)and diatomite(DT)using the iso-volume impregnation method.The results showed that the K2CO3 loading amounts of AC1,AC2,SG and DT were 24.1%,22.5%,21.7% and 19.1% respectively.The surface area and pore volume of K2CO3/AC1 and K2CO3/AC2 were larger than others.In contrast,those of K2CO3/DT were small.For K2CO3/SG,pore volume was large but surface area was small.K2CO3/AC1 and K2CO3/AC2 showed excellent carbonation capacity.However,the carbonation capacities of K2CO3/SG and K2CO3/DT were low.The difference in carbonation capacity of those sorbents were attributed to the difference in pore structure,leading to different supported sorbents.  相似文献   

17.
《分离科学与技术》2012,47(9):1295-1301
Impact of Si/Al ratio on the adsorption capacity and separation selectivity of CO2/CH4 in SAPO-34 has been investigated. SAPO-34 samples were synthesized with two Si/Al ratios (0.2 and 0.3). A batch adsorption volumetric apparatus was used to measure the adsorption equilibrium capacity and derive the equilibrium isotherms. The tests were performed in a wide range of pressure from normal to 3000 kPa and three levels of temperatures from 277 to 298 K. Results proved decreasing Si/Al ratio, from 0.3 to 0.2, improved CO2 separation from CH4.  相似文献   

18.
The NOx storage and reduction (NSR) catalysts Pt/K/TiO2–ZrO2 were prepared by an impregnation method. The techniques of XRD, NH3-TPD, CO2-TPD, H2-TPR and in situDRIFTS were employed to investigate their NOx storage behavior and sulfur-resisting performance. It is revealed that the storage capacity and sulfur-resisting ability of these catalysts depend strongly on the calcination temperature of the support. The catalyst with theist support calcined at 500 °C, exhibits the largest specific surface area but the lowest storage capacity. With increasing calcination temperature, the NOx storage capacity of the catalyst improves greatly, but the sulfur-resisting ability of the catalyst decreases. In situ DRIFTS results show that free nitrate species and bulk sulfates are the main storage and sulfation species, respectively, for all the catalysts studied. The CO2-TPD results indicate that the decomposition performance of K2CO3 is largely determined by the surface property of the TiO2–ZrO2 support. The interaction between the surface hydroxyl of the support and K2CO3 promotes the decomposition of K2CO3 to form –OK groups bound to the support, leading to low NOx storage capacity but high sulfur-resisting ability, while the interaction between the highly dispersed K2CO3 species and Lewis acid sites gives rise to high NOx storage capacity but decreased sulfur-resisting ability. The optimal calcination temperature of TiO2–ZrO2 support is 650 °C.  相似文献   

19.
Pt/Mg/Al metal oxide catalysts were prepared by impregnation and co-precipitation methods, respectively. These samples were characterized by BET, XRD and NO-TPD; their NO X storage property and adsorbing intermediate species were investigated with NSC and FTIR. The results showed that the prepared methods exert significant influence on the physical structure properties and the adsorption abilities of NO. (Pt)/Mg/Al samples prepared by impregnation (IM) have larger specific areas and higher NO X storage capacity than (Pt)/Mg/Al catalysts prepared by co-precipitation (CP). The intermediate species of NO adsorbing process indicated that NO was firstly adsorbed as bridged nitrites both on Pt/Mg/Al (IM) and on Pt/Mg/Al (CP), then on Pt/Mg/Al (IM) the nitrites transferred into monodentate and bidentate nitrate species while on Pt/Mg/Al (CP) the nitrites only transferred into monodentate nitrate species.  相似文献   

20.
《分离科学与技术》2012,47(7):1098-1112
Activated carbon can be effectively modified for CO2 adsorption with amine groups due to their high affinity for CO2. Using approaches such as impregnation, some modifiers containing amine groups are physically adsorbed on the surface of carbon, whereas other amine groups can be directly or indirectly chemically bound to the activated carbon matrix. In the context of exploring potential techniques for grafting amine groups onto activated carbon surfaces, we herein review the literature on modifications applied to different materials and supports for a variety of applications, limited to neither activated carbon nor CO2-adsorption applications. We focus on the processes of grafting amine groups and the parameters influencing these processes. Moreover, the mechanism of CO2 adsorption involving amine groups is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号