首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies in rodents showed a severe deterioration of pineal physiology with aging. The present study investigated the age-related changes in the content of monoamines and metabolites in rat and Syrian hamster pineal gland. In addition to melatonin, the levels of 5-hydroxytryptophan (5HTP), serotonin (5HT), 5-hydroxyindoleacetic acid (5HIAA), N-acetylserotonin (N-Ac-SHT), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and noradrenaline (NA) were measured by HPLC. Pronounced reductions were found in 5HT and 5HIAA contents during daytime in rats of 24 months, which had not been observed in animals of 12 months. In addition, nighttime pineal 5HIAA, N-Ac-5HT, and melatonin contents were decreased in the old rats, although a significant day:night variation persisted. Also a diurnal fluctuation in NA, DA, and DOPAC contents was present in young and middle-aged rats but not for NA and DOPAC in the oldest rats due to a decrease in the nighttime levels. Pineal DA levels were also reduced in 24-month-old rats during the night, although a marked day:night change was still found. In the Syrian hamster pineal, significant reductions in daytime 5HT and 5HIAA were found respectively at 12 and 18 months, while nighttime levels of these compounds were decreased from 18 months. The nocturnal content of N-Ac-5HT dropped gradually from 12 months, and melatonin was reduced by 74% and 86% in hamsters of 18 and 24 months, respectively. In all these compounds, a significant day:night variation was observed irrespective of age. However, neither a day:night variation nor an effect of aging was found in terms of pineal NA content. In contrast, pineal DA and DOPAC levels displayed a diurnal variation in hamsters of 1.5 and 6 months, but not in animals of 12 and 18 months due a reduced nighttime content. These data suggest that the decline of pineal melatonin with age is a consequence of a deficit in the pathway of serotonin utilization. This probably is explained by a reduced N-acetyltransferase activity, which may be linked to impaired pineal catecholaminergic neurotransmission.  相似文献   

2.
The effect of 17 beta-estradiol (E2) on the response of dopamine (DA) and serotonin (5-HT) to acute lithium in the brains of ovariectomized rats was investigated. An E2 injection (100 ng/s.c.) to ovariectomized rats did not change striatal DA levels, whereas the levels of its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), increased 30 min later; concentrations of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), also remained unchanged. In the frontal cortex, DA, 5-HT, HVA and 5-HIAA levels remained unchanged after the E2 injection, whereas DOPAC levels and DOPAC/DA and HVA/DA ratios increased 30 min later. Injection of LiCl (10 mEq) decreased striatal DA levels, increased DOPAC levels and slightly decreased HVA levels; by contrast, frontal cortex DA and HVA levels increased but DOPAC levels were unchanged. A biphasic response of striatal 5-HT levels occurred, increasing shortly after injection of LiCl, followed by a decrease; 5-HIAA levels, however, increased. In the frontal cortex, injection of rats with LiCl led to a gradual increase in 5-HT levels, whereas 5-HIAA concentrations decreased. In the presence of E2, LiCl effected a greater decrease in striatal DA than injection of LiCl alone, advanced the DOPAC peak by 30 min and increased HVA levels; E2 had less effect on the 5-HT response to LiCl, except the decreases in 5-HT and 5-HIAA at 60 min were greater. Furthermore, in the striatum, the increased DA turnover caused by LiCl, estimated by the DOPAC/DA and HVA/DA ratios, was advanced in rats treated with E2. In the presence of E2, LiCl slightly increased frontal cortex DA, DOPAC and HVA levels compared with treatment with LiCl alone, whereas DOPAC levels decreased in rats treated with LiCl + E2 compared with levels in E2-treated rats. Generally, higher levels of 5-HT and 5-HIAA were measured in the frontal cortices of rats treated with LiCl + Ex compared with rats injected with LiCl. These results indicate that E2 potentiates the acute effect of lithium on striatal and frontal cortex DA and 5-HT levels and metabolism, suggesting a role of the hormonal state on this drug response.  相似文献   

3.
Six patients with Parkinson's disease and five controls were premedicated with probenecid and the peripheral decarboxylase inhibitor alpha-methyldopathydrazine (Carbidopa) before intravenous administration of 50 muc of 14C-L-dopa in tracer quantity. Seven-and-one-half hours later lumbar CSF was obtained. 14C-homovanillic acid (HVA), a major metabolite of brain dopamine, was isolated by thin-layer chromatography and measured. The statistically significant positive correlation between endogenous HVA and 14C-HVA in the entire patient group and the slightly lower values of endogenous HVA and 14C-HVA in the CSF of the parkinsonians support the assumption that the concentration of HVA in the CSF after probenecid treatment reflects brain dopamine turnover. Measurement of labeled HVA here seems to have little advantage over measurement of endogenous HVA alone.  相似文献   

4.
We have investigated the inter-relationship between the opioid and aminergic systems in the control of secretion of the pro-oestrous LH surge and the involvement of delta-opioid receptor subtypes in this process. Conscious female rats bearing a cannula in the femoral artery were injected i.p. with a selective delta-opioid receptor agonist (DPDPE) either alone or with the opioid antagonist (naloxone) at 1300 h on the day of pro-oestrus. Blood samples were collected hourly between 1500 h and 1900 h, and plasma LH levels were measured by RIA. At the end of this period (1900 h), the animals were autopsied and the concentrations of the amines (noradrenaline (NA), dopamine (DA), 5-hydroxytryptamine (5HT)) and their metabolites (dihydroxyphenolglycol (DHPG) and 5-hydroxyindoleacetic acid (5HIAA), metabolites of NA and 5HT respectively) were determined by HPLC with electrochemical detection in the medial preoptic area, suprachiasmatic nucleus, median eminence and arcuate nucleus. DPDPE abolished the LH surge and concomitantly decreased hypothalamic NA and DHPG concentrations in all the areas examined. The levels of DA, 5HT and 5HIAA were also reduced in all hypothalamic regions studied, except DA and 5HIAA in the suprachiasmatic nucleus. Naloxone reversed these inhibitory effects of the delta-agonist. We conclude that activation of delta-opioid receptors may exert an inhibitory effect on LH release. The effect is probably an indirect one mediated by the monoaminergic systems, as they are suppressed by DPDPE in nearly all the hypothalamic regions studied.  相似文献   

5.
This experiment utilized neurotransmitter turnover rates to assess the effects of withdrawal from chronic cocaine on the brain. A triad-littermate design was used to evaluate the importance of response dependency on the effects of withdrawal from chronic cocaine administration upon brain biogenic monoamine and amino acid putative neurotransmitter turnover rates. Each member of a triad was exposed to one of three conditions. Cocaine infusions (0.33 mg/inf) were used to engender and maintain lever pressing by one rat under an FR 2 schedule, while the second and third rats received simultaneous infusions of either cocaine or saline, respectively. After a minimum of 15 days exposure to the three treatment conditions and 24 h after the start of the last drug session, the triads were pulse labeled with [14C]glucose, [3H]tyrosine and [3H]tryptophan and killed 60 or 90 min later by total immersion in liquid nitrogen, The frozen brains were removed and dissected at -20 degrees C into 22 areas. The content and specific radioactivities for dopamine (DA), noradrenaline (NA), serotonin (5-HT), aspartate (Asp), glutamate (Glu), glycine (Gly) and gamma-aminobutyric acid (GABA) were determined in each brain region using high pressure liquid chromatography with electrochemical (biogenic monoamines) or fluorescence (amino acids) detection followed by liquid scintillation spectrometry. Turnover rates (TOR) were calculated and compared across treatment conditions. The significant decreases in TOR resulting from chronic cocaine exposure included 5-HT in the frontal cortex, DA in the cingulate cortex, entorhinal-subicular and motor-somatosensory cortices and NA in the inferior colliculus. Significant increases in TOR were also observed which included 5-HT in the preoptic-diagonal band region, DA in the hippocampus and NA in the pyriform and temporal-auditory cortices, the dentate gyrus and brainstem. GABA TOR was also increased in the preoptic-diagonal band region, dentate gyrus and brainstem of both groups receiving cocaine as was Glu TOR in the pyriform cortex and cerebellum. In addition, changes were seen in the rats under the ratio schedule of cocaine self-administration that were not seen in rats receiving yoked-cocaine infusions that included increased TOR of 5-HT in the pyriform cortex, NA in the caudate-putamen and GABA in the pyriform and motor-somatosensory cortices. Decreased 5-HT TO was seen in the motor-somatosensory cortex and dentate gyrus in the rats that had self-administered cocaine compared to the yoked-cocaine infused group. Perhaps the most interesting changes were those seen in the yoked-cocaine group that were reversed in the rats whose responding was maintained by cocaine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
The levels of noradrenaline (NA) and 3-methoxy-4-hydroxyphenylethyleneglycol sulphate (MHPG-SO4) in 15 brain regions showed a parallel distribution in male Wistar rats. The differences in regional distribution of MHPG-SO4 were similar to those in the rate of NA turnover reported by other investigators. The accumulation rates of MHPG-SO4 during 45 and 90 min after probenecid injection significantly correlated to the steady state levels of MHPG-SO4 in nine regions studied. With the results, the regional levels of MHPG-SO4 either in untreated or in probenecid-treated rats, are considered to be a useful index of NA turnover.  相似文献   

7.
In vivo microdialysis in freely moving rats was used to study the biotransformation, consisting primarily of decarboxylation by aromatic amino acid decarboxylase (AAAD), of the precursors L-3,4-dihydroxyphenylalanine (L-DOPA), L-5-hydroxytryptophan (L-5HTP), and L-threo-3,4-dihydroxyphenylserine (L-threo-DOPS) on extracellular levels of dopamine (DA), serotonin (5HT) and noradrenaline (NA), respectively. The precursors were administered locally through the microdialysis probe into the striatum and into the hippocampus. The different transmitter systems were compared with respect to the ability of the precursors to elevate extracellular levels of their associated transmitter. The basal extracellular concentrations of NA and DA were found to be tetrodotoxin (TTX, a blocker of fast sodium channels) sensitive in striatum and hippocampus, indicating the neuronal origin of the measured transmitters. The extracellular concentrations of 5HT (in hippocampus) were only 60% TTX-sensitive. L-DOPA and L-5HTP showed to be effective precursors of DA and 5HT, respectively, although their formation profile was quite different. The L-DOPA-induced increase in extracellular DA was large and short-lasting, while the L-5HTP-induced increase in 5HT was slower and less pronounced. The relative increase in extracellular DA or 5HT was more pronounced in the brain region where their baseline values were lower, but the absolute amount of transmitter formed from their precursor was similar in both brain regions. L-threo-DOPS was a poor precursor for NA and also failed to influence extracellular DA in striatum, questioning its use in the treatment of freezing gait in late stages of Parkinson's disease.  相似文献   

8.
The effects of triadimefon (TDF) were examined in male Sprague-Dawley rats. In this study, the acute administration of TDF (100 mg/kg) was found to significantly increase locomotor activity and induce stereotyped behavior. Acute administration of TDF was also found to significantly increase dopamine (DA) and homovanillic acid (HVA) levels while the dihydroxyphenylacetic acid (DOPAC) level remained unchanged in both the nucleus accumbens (NA) and striatal (ST) tissues when compared to control. Furthermore, DOPAC:DA ratios were significantly reduced in both brain regions suggesting an increase in DA turn overrate. On the other hand, in animals receiving repeated TDF administration, only the HVA level was significantly increased in both the ST and NA. TDF neither competed for binding to D2, D3 or D4 DA receptors nor altered the Kd or the Bmax of [3H] SCH 23390 and [3H] spiperone recognition sites associated with striatal D1 and D2 receptors, respectively. Meanwhile, TDF competed with [3H] GBR 12935 for binding to DA transporter sites with strong affinity, but repeated treatment with TDF had no sustained or cumulative effect on the DA transporter system. These results clearly show that acute TDF-induced behavioral effects may not be via binding to DA receptors, but through the interaction with DA transporter binding sites. Also, TDF does not appear to produce cumulative effects in the parameters evaluated.  相似文献   

9.
Repeated daily intraperitoneal (i.p.) administrations of cadmium (CdCl2, 1 mg/kg per day for 5 days) increased striatal dopamine (DA) release (180% of controls) and turnover (150% of controls) in 13-day-old rats. Cd treatment also increased striatal metallothionein (MT) content (161%), Cd (127%) and lipid peroxidation (LPO, 190%). In addition, Cd treatment decreased striatal tyrosine hydroxylase (TH) activity (-28%), and such an effect may result from D-2 receptor blockade as a consequence of excessive dopamine release, since sulpiride (a specific D-2 receptor antagonist) administration to Cd-treated rats abolished the effect of Cd on TH. No effect was observed on striatal monoamine oxidase (MAO) activity. Dexamethasone (Dx) treatment increased striatal MT content and caused no effect on either DA release or turnover. However, Dx administration prevented the effects caused by Cd, including the increased DA release and enhanced striatal lipid peroxidation. These results indicate that toxic effects on the brain are to be expected as a result of Cd exposure and that Dx administration can attenuate them.  相似文献   

10.
The parathyroid hormone (PTH) gene is expressed and translated in the rat hypothalamus, and the possibility that PTH may modulate neural activity was therefore examined in anesthetized rats. Intracerebroventricular (ICV) injections of 1.0 or 10.0 micrograms rat, human, or bovine PTH(1-34) was followed 60 min later by increased concentrations of DOPAC (dihydroxyacetic acid) and the DOPAC:dopamine (DA) ratio in the medial basal hypothalamus (MBH), but not in other (brainstem, cerebral cortex, cerebellum) regions of the brain. Tissue concentrations of norepinephrine and serotonin were unchanged by ICV PTH administration, although MBH concentrations of 5-hydroxyindolacetic acid (5-HIAA) were increased following PTH administration. An increase in MBH DA turnover (as indicated by an increased DOPAC:DA ratio) was also induced by the ICV injection of 10 micrograms PTH-related protein [PTHrP(1-34)]. Pretreatment with the receptor antagonists PTH(7-34) or PTHrP(7-34) completely blocked the subsequent DOPAC response to ICV PTH or PTHrP, respectively. The DOPAC concentrations in hypothalamic extracellular fluid (ECF), sampled by microdialysis, were also increased within 20 min of PTH(1-34) perfusion, in the absence of changes in the ECF concentrations of 5-HIAA. These results demonstrate that PTH and PTH-like peptides specifically increase DA turnover in the rat MBH and suggest novel roles for these hormones in neural regulation.  相似文献   

11.
Increased monoamine metabolism in experimental herpes simplex virus (HSV) encephalitis is well established. Both serotonin (5-HT) and dopamine (DA) systems are affected. HSV invades the raphe nuclei after its entry into the brain stem. However, no studies have been published concerning influences of HSV on the neurotransmitters in the raphe. In the present study, concentrations of 5-HT and DA and their metabolites in the raphe nuclei and related brain regions in rabbits with fulminant HSV encephalitis have been analyzed using high-pressure liquid chromatography. Encephalitis was induced by corneal inoculation with HSV. Homovanillic acid (HVA) and dihydroxyphenyl acetic acid (DOPAC) concentrations and HVA/DA ratios were increased in the raphe nuclei suggesting increased DA turnover. The most substantial changes were bilaterally decreased 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) concentrations in the raphe nuclei. The decrease in the raphe 5-HT was reflected also to the projection areas in the hemispheres, where 5-HT concentrations were lower in HSV-inoculated rabbits than in controls. The changes strongly suggest a direct influence of HSV on serotoninergic neurons. Since the ventral parts of the limbic system have rich serotoninergic afferents from the raphe, this also suggests that HSV may reach hemispheres in HSV encephalitis from the brain stem via the ascending serotoninergic system.  相似文献   

12.
The effect of acute ethanol on peripheral serotonin (5HT) metabolism was studied in Sprague-Dawley rats. Four hours after a single dose of ethanol (1.0 g/kg) administered into the stomach, a significant increase in the 5HT level in stomach tissue and a decrease in ileum was observed. The level of 5-hydroxyindole-3-acetic acid (5HIAA) was increased in urine, while increased concentrations of 5-hydroxytryptophol (5HTOL) occurred in jejunum, ileum, spleen and urine. After 7-9 h when the blood ethanol concentration had returned to zero, 5HTOL levels were still higher than control values in jejunum, ileum and urine. At 4 h, an elevated ratio of 5HTOL to 5HIAA was observed in urine and ileum (by approximately 2-fold), liver (approximately 3-fold), and spleen (approximately 5-fold), whereas the ratio was reduced in stomach. In urine and spleen, this metabolic shift persisted after 7-9 h. The 5HTOL level in bile was increased by approximately 3.5-fold after 8 h. 5HIAA was not detectable in bile. The present results indicate that the rat has a much higher proportion of 5HTOL formation than man under normal conditions. The rat does not appear to be an ideal model for studying the interaction between ethanol and 5HT metabolism in man.  相似文献   

13.
Recent ex vivo findings have shown that morphine increases dopamine (DA) and xanthine oxidative metabolism and ascorbic acid (AA) oxidation in the rat striatum. In the present study, we evaluated the effects of subcutaneous daily morphine (20 mg/kg) administration on DA, dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), AA and uric acid in the striatum of freely moving rats using microdialysis. Dialysates were assayed by high performance liquid chromatography with electrochemical detection. On the first day, morphine administration caused a significant increase in extracellular DA, DOPAC, HVA, AA and uric acid concentrations over a 3 h period after morphine. In all treated rats (n = 7), individual concentrations of DOPAC + HVA were directly correlated with individual AA and uric acid concentrations. Last morphine administration on the 4th day increased DOPAC, HVA, AA and uric acid concentrations but failed to increase those of DA. Individual DOPAC + HVA concentrations were still directly correlated with individual AA and uric acid concentrations. These results suggest that systemic morphine increases both striatal DA release and DA and xanthine oxidative metabolism. Only the former effect undergoes tolerance. The increase in DA oxidative metabolism is highly correlated with that of xanthine. The subsequent enhancement in reactive oxygen species production may account for the increase in extracellular AA.  相似文献   

14.
The concentrations of dopamine (DA), serotonin (5HT) and their metabolites were quantified in 5 brain areas of rats exposed to saline, cocaine (15 mg/kg b.i.d.), amitriptyline (10 mg/kg), or amfonelic acid (AFA, 1.5 mg/kg) throughout gestation. Male pups from 3 similarly treated dams were fostered to 2 surrogate dams. The process of breeding and rearing was repeated 4 times with new dams to build the groups to 4-12, since only one pup per litter was used for any one measurement. AFA was used to mimic the dopamine (DA) uptake blockade and stimulant properties of cocaine and amitriptyline was used to mimic the other pharmacological effects of cocaine. At postnatal days (PND) 30, 60, and 180, one pup per litter was removed for HPLC analysis of monoamines. A second pup received 0.3 mg/kg haloperidol, catalepsy assessed after 1 hr, and the brain used for analysis. The cataleptic response to haloperidol was unaffected by any prenatal treatment. The striatum from PND 30 cocaine rats had decreased levels of DA without a decrease in DA metabolites. At PND 60 in cocaine exposed rats, DA and DOPAC concentrations were increased, and 5HT levels were decreased in the striatum. The amitriptyline-exposed group exhibited decreased 5HT and 5-HIAA levels in the striatum. The hypothalamus of the cocaine group had lower levels of 5-HIAA, and other brain areas had a trend for lower levels of 5HT and 5-HIAA. At PND 180, DOPAC was increased in the striatum and prefrontal cortex of the cocaine group. Haloperidol-induced altered monoamine metabolism was unaffected by any prenatal treatment at any age. These data suggest that age-related changes in the DA and 5HT neurotransmission systems occur in rats exposed prenatally to cocaine. However, the ability of the dopaminergic system to respond to a challenge by a DA receptor blocker is unaltered by these in utero treatments.  相似文献   

15.
We examined in 5-day-old rats the effects of either anoxia or 8% hypoxia on extracellular monoamines such as dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), norepinephrine (NE), 5-hydroxytryptamine (5-HT), and 5-hydroxyindole-3-acetic acid (5-HIAA) using in vivo microdialysis and subsequent HPLC. After stabilization 64 animals were exposed to 100% nitrogen for 16 min and 40 animals to 8% oxygen for 128 min. Both anoxia and hypoxia produced acute increase in the striatal extracellular DA (anoxia: P < 0.001, hypoxia: P < 0.01). Especially in anoxia, DA levels increased transiently to 2000-times the basal levels and 6-times higher than those in hypoxia. NE also increased in both anoxia and hypoxia. DOPAC and HVA decreased during hypoxia (P < 0.01 and P < 0.001, respectively), while those in anoxia were unchanged. In anoxia, decrease tendency of their levels were in short duration and that of 5-HIAA was followed by gradual increase (P < 0.001). These data demonstrated that brief exposure to anoxia or hypoxia had significant influence on striatal monoamine metabolism in immature brain and the pattern of change of monoamine in anoxia was different from that in hypoxia.  相似文献   

16.
Turnover of noradrenaline (NA) and dopamine (DA) in some regions of the rat brain was determined after 1 and 3 weeks of daily injections of lysine vasopressin (LVP) and 2 weeks after the termination of 28-day LVP injections. Disappearance of 3H-DA was estimated in the hemispheres, brain stem and striatum and of 3H-NA in the hemispheres and brain stem after intraventricular injection of 3H-tyrosine. A significant acceleration of 3H-NA disappearance from the hemispheres was found in all the experimental animals and from the brain stem 3 weeks after LVP adminstration and 2 weeks after its withdrawal. No marked changes in dopamine turnover in the examined regions of the rat brain were found. Since prolonged vasopressin administration produces hypertension in the rat it seems likely that central NA, but not DA, plays a role in the vasopressin-induced hypertension.  相似文献   

17.
The role of monoamine oxidase (MAO) type A and B on the metabolism of dopamine (DA) in discrete regions of the monkey brain was studied. Monkeys were administered (-)-deprenyl (0.25 mg/kg) or clorgyline (1.0 mg/kg) or deprenyl and clorgyline together by intramuscular injections for 8 days. Levels of DA and its metabolites, dihydroxy phenylacetic acid (DOPAC) and homovanillic acid (HVA) were estimated in frontal cortex (FC), motor cortex (MC), occipital cortex (OC), entorhinal cortex (EC), hippocampus (HI), hypothalamus (HY), caudate nucleus (CN), globus pallidus (GP) and substantia nigra (SN). (-)-Deprenyl administration significantly increased DA levels in FC, HY, CN, GP and SN (39-87%). This was accompanied by a reduction in the levels of DOPAC (37-66%) and HVA (27-79%). Clorgyline administration resulted in MAO-A inhibition by more than 87% but failed to increase DA levels in any of the brain regions studied. Combined treatment of (-)-deprenyl and clorgyline inhibited both types of MAO by more than 90% and DA levels were increased (57-245%) in all brain regions studied with a corresponding decrease in the DOPAC (49-83%) and HVA (54-88%) levels. Our results suggest that DA is metabolized preferentially, if not exclusively by MAO-B in some regions of the monkey brain.  相似文献   

18.
The relationships between CSF monoamine metabolites (HVA and 5HIAA), nurses' ratings of clinical symptoms, and telemetered measures of motor movement of ten schizophrenic and ten depressed patients were investigated. There was a significant negative correlation between CSF 5HIAA and both agitation ratings and motor movement in the schizophrenics. CSF HVA correlated positively to anxiety and anger in the depressives. The schizophrenics had a significantly higher CSF HVA than the depressives which appeared unrelated to motor movement. The effects of serotonin turnover and arousal in schizophrenia and the association between CSF metabolite gradients, stress, motor movement, and biogenic amine levels in depression are discussed.  相似文献   

19.
The biochemical properties of the new methyl indole derivative IM-24 (N-methyl-N-propargyl-2(1-methyl-5-methoxyindolyl)methylamine HCl) have been investigated. The activity on both forms of monoamine oxidase MAO was tested in several nervous and non nervous tissues ex vivo after chronic administration. IM-24 is mainly an inhibitor of the activity of MAO A without any effect on intestinal MAO B at the doses studied. IM-24 was compared with tricyclic antidepressants in tests for serotonin (5HT), noradrenaline (NA) and dopamine (DA) uptake inhibition in vitro. IM-24 is mainly an inhibitor of the 5HT uptake mechanism but is less active than paroxetine and chlorimipramine which are very potent 5HT-uptake inhibitors. Radioligand binding techniques in rat brain ex vivo showed that IM-24 after chronic administration (21 days) produces no change in the number or the affinity of the alpha 2-adrenoceptors. IM-24 reduces by 70% the number of 5HT2 receptors but does not modify the affinity for the ligand. IM-24 is thus an interesting compound which combines monoamine oxidase inhibition with inhibition of 5HT uptake. Both these actions will lead to an increase of the availability of serotonin at the synaptic site.  相似文献   

20.
OBJECTIVES: To investigate whether dehydroepiandrosterone (DHEA), an adrenal/gonadal androgen, can act centrally to reduce energy intake in a model of genetic obesity, the Zucker fatty rat. To investigate a possible mechanism of action. DESIGN: Two experiments were performed in lean and obese female Zucker rats. In the first experiment, 24 h following administration of i.p. DHEA (200 mg/kg), three hypothalamic regions [lateral hypothalamus (LH), ventromedial nucleus (VMH), and paraventricular nucleus (PVN)] were analyzed for monoamine neurotransmitter concentrations. In the second experiment, DHEA (50 micrograms) was administered by i.c.v. injection. Energy intake for the following day was measured. MEASUREMENTS: In the first experiment, concentrations of norepinephrine (NE), epinephrine (EPI), dopamine (DA), serotonin (5HT), the serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) were measured. Ratios of 5HT/5HIAA were calculated. In the second experiment, kilojoules consumed per 24 h were calculated. RESULTS: All LH monoamines, and PVN DA, displayed lower concentrations in obese than lean control rats. DHEA treatment reversed these reductions in obese rats without affecting lean rats. DHEA increased VMH EPI in obese rats only. DHEA increased PVN NE in both lean and obese rats. I.C.V. DHEA decreased energy intake in obese but not lean rats. CONCLUSION: The i.c.v. results suggest that DHEA exerts a phenotype specific, centrally mediated inhibitory effect on food intake. In addition, in doses previously shown to reduce energy intake in obese but not lean rats, i.p. DHEA reversed reduced concentrations of many monoamines, particularly in the LH, in obese animals only. These latter changes provide indirect evidence to suggest that these central neurotransmitters may play an important role in the antiobesity effect of DHEA in the Zucker fatty rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号