首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-quality LB multilayers have been prepared from the Lu(III) sandwich complex of 2,3,9,10,16,17,23,24-octa (n-butoxy)phthalocyanine (LuPc2(OBu)16). Surface pressure-area isotherms were characterized and indicate that a stable monolayer is formed corresponding to an area per molecule of 2.4 nm2 at 30 mN m−1. The LB films were highly birefringent, and polarized spectra gave dichroic ratios of 3.3 for the 670 nm absorption band and between 0.5 and 2.8 for infrared absorptions. The results indicate that the phthalocyanine rings were highly oriented perpendicular to the dipping direction but somewhat tilted from the substrate normal. The order was shown to be absent when (i) unsubstituted LuPc2 was used for LB films, or (ii) the horizontal lifting method of film deposition was used, or (iii) the surface pressure was increased to 50 mN m−1, causing a molecular rearrangement. The ordering was improved at 100 °C and finally lost at 280 °C by annealing on a hot stage. The d.c. electrical conductivity of LB films of LuPc2(OBu)16 was low (σ ≈ 2 × 10−7 Ω−1 m−1), in contrast with unsubstituted LuPc2 (σ ≈ 10−1 Ω−1 m−1) and showed no evidence for anisotropy. The findings are in broad agreement with related studies and illustrate some of the many factors involved in improving the structure of phthalocyanine LB films for possible applications.  相似文献   

2.
The effects of laser-shock processing (LSP) on the microstructure, microhardness, and residual stress of low carbon steel were studied. Laser-shock processing was performed using a Nd:glass phosphate laser with≈600 ps pulse width and up to 120 J pulse energy at power densities above 1012 W cm−2. The effects of shot peening were also studied for comparison. Laser-shock induced plastic deformation caused the surface to be recessed by≈1.5 μm and resulted in extensive formation of dislocations. Surface hardness increased by up to 80% after the LSP. The microstructure and mechanical properties were altered up to≈100 μm in depth. The LSP strengthening effect on low carbon steel was attributed to the presence of a high dislocation density. Shot peening resulted in a relatively higher compressive residual stress throughout the specimen than did LSP.  相似文献   

3.
Thin films of copper indium di-selenide (CIS) with a wide range of compositions near stoichiometry have been formed on glass substrates in vacuum by the stacked elemental layer (SEL) deposition technique. The compositional and optical properties of the films have been measured by proton-induced X-ray emission (PIXE) and spectrophotometry (photon wavelength range of 300–2500 nm), respectively. Electrical conductivity (σ), charge-carrier concentration (n), and Hall mobility (μH) were measured at temperatures ranging from 143 to 400 K. It was found that more indium-rich films have higher energy gaps than less indium-rich ones while more Cu-rich films have lower energy gaps than less Cu-rich films. The sub-bandgap absorption of photons is minimum in the samples having Cu/In ≈ 1 and it again decreases, as Cu/In ratio becomes less than 0.60. Indium-rich films show n-type conductivities while near-stoichiometric and copper-rich films have p-type conductivities. At 300 K σ, n and μH of the films vary from 2.15 × 10−3 to 1.60 × 10−1 (Ω cm)−1, 2.28 × 1015 to 5.74 × 1017 cm−3 and 1.74 to 5.88 cm2 (V s)−1, respectively, and are dependent on the composition of the films. All the films were found to be non-degenerate. The ionization energies for acceptors and donors vary between 12 and 24, and 3 and 8 meV, respectively, and they are correlated well with the Cu/In ratios. The crystallites of the films were found to be partially depleted in charge carriers.  相似文献   

4.
The effect of the ion bombardment to unbalanced magnetron deposited, approximately 1.5 and 4.5 μm thick, Nb coatings have been investigated as the bias voltage was varied from UB=−75 to −150 V. Increasing bias voltage increased the hardness of the coating from 4.5 to 8.0 GPa. This was associated with residual stress and Ar incorporation into the Nb lattice. Strong {110} texture developed in the samples deposited at low bias voltages, while beyond UB=−100 V a {111} texture became dominant. However, strong {111} texture was observed only with the thicker 3Nb coatings. Secondary electron microscopy investigation of the coating topography showed fewer defects in the thicker coatings. All coatings exhibited good corrosion resistance, with the thicker coatings clearly outperforming the thinner ones. Excessive bias voltages (UB=−150 V) was found to lead to poor adhesion and loss of corrosion resistance.  相似文献   

5.
An organic amorphous semiconductor with unusual electrical switching capability has been synthesized by the direct decomposition of carbon disulfide. Metallic black highly conducting (above 102 Ω−1 cm−1) thin films of approximate composition C3S have been prepared by the simple passage of dilute carbon disulfide vapors over an incandescent tungsten filament. Film growth rates greater than 10 μm h−1 are observed. The coatings are hard, adherent on a wide variety of substrates, thermally stable, and remarkably inert to all but the most severe mineral acid digestion. The carbon sulfide solids behave like varistors, following Ohm's law over many decades of current up to a threshold voltage, typically 1–10 V, beyond which the current surges, independent of applied voltage. The threshold voltage is uniquely temperature dependent, reaching a maximum as the temperature is reduced from room temperature, then decreasing once again at cyrogenic temperatures.  相似文献   

6.
The cyclic deformation behaviors of [2̄33] coplanar double-slip-oriented and [4̄ 18 41] single-slip-oriented copper single crystals were investigated at constant plastic shear strain amplitude γpl in the range of about 10−4–10−2 at ambient temperature in air. It was revealed that the cyclic deformation behavior of copper single crystal oriented on the 011-1̄11 side is distinctly dissimilar from that on the 001-1̄11 and 001-011 sides in the stereographic triangle. The plot of initial hardening rate θ0.2 against γpl of [2̄33] crystal exhibits two regions as presented for single-slip-oriented crystals. The critical strain amplitude (≈3.5×10−3), corresponding to the occurrence of the secondary hardening stage in the cyclic hardening curve of the [2̄33] crystal, was found to be an intermediate value between that for single-slip-oriented single crystals and polycrystals. The result shows that the cyclic hardening behavior of the [2̄33] crystal, as compared with that of single-slip-oriented crystals, is more close to that of polycrystals. Instead of a clear plateau, the cyclic stress–strain (CSS) curves of the [2̄33] crystals shows a quasi-plateau over the range of about 3.0×10−4–2.0×10−3, which would be greatly attributed to the mode of dislocation interactions between slip systems operating in the crystal. The habit plane of two types of deformation bands DBI and DBII, formed in the cyclically deformed [2̄33] crystal, are perpendicular to each other strictly, and they develop with increasing applied strain amplitude.  相似文献   

7.
Internal friction in copper thin films 0.2–1.5 μm thick on silicon substrates has been measured between 180 and 340 K as a function of strain amplitude. Analysis of the amplitude-dependent internal friction in the copper films shows the relation between the plastic strain of the order of 10−9 and the effective stress on dislocation motion. The stress–strain curves thus obtained for the copper films tend to shift to a higher stress with decreasing film thickness and also with decreasing temperature, both indicating a suppression of microplastic flow. It is concluded that the microflow stress at a constant level of the plastic strain varies inversely with the film thickness at all temperatures examined. The film thickness effect in the microplastic range can be explained on the basis of a dislocation-bowing model.  相似文献   

8.
In this study, the compression deformation behavior of a Ti6Al4V powder compact, prepared by the sintering of cold compacted atomized spherical particles (100–200 μm) and containing 36–38% porosity, was investigated at quasi-static (1.6×10−3–1.6×10−1 s−1) and high strain rates (300 and 900 s−1) using, respectively, conventional mechanical testing and Split Hopkinson Pressure Bar techniques. Microscopic studies of as-received powder and sintered powder compact showed that sintering at high temperature (1200 °C) and subsequent slow rate of cooling in the furnace changed the microstructure of powder from the acicular alpha () to the Widmanstätten (+β) microstructure. In compression testing, at both quasi-static and high strain rates, the compact failed via shear bands formed along the diagonal axis, 45° to the loading direction. Increasing the strain rate was found to increase both the flow stress and compressive strength of the compact but it did not affect the critical strain for shear localization. Microscopic analyses of failed samples and deformed but not failed samples of the compact further showed that fracture occurred in a ductile (dimpled) mode consisting of void initiation and growth in phase and/or at the /β interface and macrocracking by void coalescence in the interparticle bond region.  相似文献   

9.
The oxidation of a CoGa(100) surface at high temperatures has been studied by scanning tunnelling microscopy (STM) and auger electron spectroscopy (AES). When CoGa(100) is oxidised at a sufficiently high temperature (>600 K), an ordered Ga2O3 film is formed. The stability of the film depends on the sample temperature and partial oxygen pressure of the ambient gas. At negligible oxygen pressure (<10−11 mbar) the oxide is stable up to 850 K. At an oxygen pressure of 10−6 mbar the oxide is stable up to 930 K and some of the oxide remains present up to 970 K. The oxide film is found to be very uniform. The thickness of the film is constant and independent of the oxidation temperature (600 K<T<930 K), oxygen pressure (<10−6 mbar), and exposure (10−4–10−2 mbar.s≈102–104 L). We find a clear improvement of the order of the oxide film surface with increasing oxidation temperature. In STM images, a domain structure of the oxide film is observed. The size of the domains increases by a factor of 5–10 when the oxidation temperature is increased from 700 to 900 K.  相似文献   

10.
Diamond thin films grown on high resistivity, 100 oriented silicon substrates by the hot filament chemical vapor deposition (HFCVD) method have been characterized by four-point probe and current-voltage (through film) techniques. The resistivities of the as-grown, chemically etched and annealed samples lie in the range of 102 Ω cm to 108 Ω cm. The Raman measurements on these samples indicate sp3 bonding with a sharp peak at 1332 cm−1. The surface morphology as determined by scanning electron microscope shows polycrystalline films with (100) or (111) faceted structures with average grain size of ≈2.5 μm. The through film current-voltage characteristics obtained via indium contacts on these diamond films showed either rectifying or ohmic behavior. The difference in Schottky and ohmic behavior is explained on the basis of the high or low sheet resistivities measured by four-point probe technique. 5% methane to hydrogen concentration during film growth resulted in poor surface morphology, absence of sp3 bonds, and low resistivity.  相似文献   

11.
Appreciable excited-state absorption (ESA) in U2+:CaF2 and Co2+:ZnSe saturable absorbers was measured at λ=1.573 μm by optical transmission versus light fluence curves of 30–40 ns long pulses. The ground- and excited-state absorption cross-sections obtained were (9.15±0.3)×10−20 and (3.6±0.2)×10−20 cm2, respectively, for U2+:CaF2, and (57±4)×10−20 and (12.5±1)×10−20 cm2 for Co2+:ZnSe. Thus, ESA is not negligible in U2+:CaF2 and Co2+:ZnSe, as previously estimated.  相似文献   

12.
Pressed disks of TiO2 powder particles (≈1 μm in size) have been irradiated with a pulsed KrF (248 nm) excimer laser source at fluences between 0.1 and 1 J cm−2. Surface films (1.5–2 μm thick) have been studied by Raman microprobe spectroscopy and atomic force microscopy (AFM). The Raman study reveals a three-layer structure for the irradiated anatase powders. A dark layer of reduced oxide is sandwiched between a top coating of molten/resolidified rutile and an underlying defective, slightly oxygen-deficient mixed-phase of rutile and anatase. AFM measurements indicate that a smooth surface layer coexisting with the initial rough grain morphology gradually appears with increasing fluence. At low fluence, anatase is reduced in a dark film and further transformed into rutile. At intermediate fluence, a shiny coating of resolidified stoichiometric rutile forms on the dark film. It gets thicker as the fluence increases while darkening of the sublayer intensifies up to a maximum of approximately 700 mJ cm−2. At high fluence, however, melting and re-oxidation (and eventually ablation) prevail over reduction; the whole layer turns into a greyish crust of mostly resolidified rutile in non-ablated regions. A physico-chemical mechanism is proposed to explain the in-depth distribution of the various components as a function of fluence.  相似文献   

13.
The residual stress of multilayers in piezoelectric microelectromechanical systems structures influences their electromechanical properties and performance. This paper describes the development of residual stress in 1.6 μm Pb(Zr0.52,Ti0.48)O3 (PZT)/0.3 μm ZrO2/0.5 μm SiO2 stacks for microactuator applications. The residual stresses were characterized by wafer curvature or load-deflection measurements. PZT and zirconia films were deposited on 4-in. (100) silicon wafers with 0.5 μm thick thermally grown SiO2 by sol–gel processes. After the final film deposition, the obtained residual stress of PZT, ZrO2, and SiO2 were 100–150, 230–270, and − 147 MPa, respectively. The average stress in the stack was  80 MPa. These residual stresses are explained in terms of the thermal expansion mismatch between the layers and the substrate. Load-deflection measurements were conducted to evaluate localized residual stresses using released circular diaphragms. The load-deflection results were consistent with the average stress value from the wafer curvature measurements. It was found that more reasonable estimates of the stack stresses could be obtained when mid-point vertical deflection data below 6 μm were used, for diaphragms 0.8–1.375 mm in diameter.  相似文献   

14.
Research on the high temperature creep behavior of three rapidly solidified Al-Fe-X-Si (where X = Cr, Mn or Mo) dispersion strengthened materials with three different alloying compositions has been conducted. Firstly, microstructural examinations have been carried out on the as-received, thermally treated and tested samples. The microstructure consists of a fine Al matrix embedding small round-shaped Al12(Fe,X)3Si and Al13(Fe,X)4 dispersoids. Grain sizes ranging from 0.85 to 1.45 μm and dispersoid sizes ranging from 45 to 54 nm were observed. Secondly, tensile tests were performed at high temperature from 573 to 823 K at strain rates ranging from 2.5×10−6 to 10−2s−1. The experimental data exhibited high apparent stress exponent, nap, and high activation energy, Qap. The rnicrostructure remained stable and fine after testing. The results are analyzed by means of various models used in the literature.  相似文献   

15.
Vanadium-modified (V-Mod) 2.25Cr-1Mo steel has been studied to determine the effect of calcium treatments and strain rate on susceptibility to reheat cracking of the heat-affected zone in low-alloy steels for reactor applications. The susceptibility to reheat cracking was determined by tensile tests in the strain-rate range of 1 × 10−4/s to 3 × 10−6/s in the temperature region of 293K to 1023K. The grain size of tensile specimens was about 200μm. For the low-sulfur V-Mod steel, calcium treatment dramatically increased the total elongation and reduction of area at 923K at high strain rates. However, the beneficial effect on the ductility decreased as the strain rate decreased. For the V-Mod steel with commercial sulfur-content level, the addition of calcium was not very effective in decreasing the susceptibility to reheat cracking, independent of the strain rates investigated. The results are described and discussed.  相似文献   

16.
Optically active Er3+:Yb3+ codoped Y2O3 films have been produced on c-cut sapphire substrates by pulsed laser deposition from ceramic Er:Yb:Y2O3 targets having different rare-earth concentrations. Stoichiometic films with very high rare-earth concentrations (up to 5.5 × 1021 at cm− 3) have been achieved by using a low oxygen pressure (1 Pa) during deposition whereas higher pressures lead to films having excess of oxygen. The crystalline structure of such stoichiometric films was found to worsen the thicker the films are. Their luminescence at 1.53 μm and up-conversion effects have been studied by pumping the Yb3+ at 0.974 μm. The highest lifetime value (up to 4.6 ms) is achieved in films having Er concentrations of ≈ 3.5 × 1020 at cm− 3 and total rare-earth concentration ≈ 1.8 × 1021 at cm− 3. All the stoichiometric films irrespective of their rare-earth concentration or crystalline quality have shown no significant up-conversion.  相似文献   

17.
The most important primary interaction cross section of gamma radiation which is of interest in radiation dosimetry and health physics is the energy absorption coefficient μen of the medium under study. Direct measurement of μen is, however, difficult and recourse is taken to theoretical computations for its estimation. In this study a new, simple and direct method for the determination of μen is reported. The method is based on paraxial sphere transmission using a proportional-response gamma detector. The bremsstrahlung originating from photoelectrons in the absorbing medium and fluorescence radiations from shielding etc. have been suppressed by using suitable filters. The effects of nonparaxiality and of finite sample thickness have been accounted for, using extrapolation procedures. The deviation from nonproportionality and other corrections have been shown to be small. The measured value of μen for paraffin has been determined as (3.3±0.2)×10−3 m2/kg. This compares favourably with the theoretically computed value of 3.35 × 10−3 m2/kg given by Hubbell et al.  相似文献   

18.
In order to get an insight into the grain boundaries (GBs) in nanocrystalline (n-) metal, we prepared the high-density n-Au with ρ/ρ0>99% by the gas-deposition method and carried out the vibrating reed measurements, where ρ/ρ0 is the relative density referring to the bulk density. The strain amplitude dependence (SAMD) of the resonant frequency (f) and the internal friction (Q−1) was measured for the strain () amplitude between 10−6 and 2×10−3 and for temperature between 5 and 300 K. No plastic deformations are detected for the present strain range, where f decreases for up to 10−4 and then turns to increase, showing saturation for between 10−4 and 2×10−3. The low temperature irradiation by 2 MeV electrons or 20 MeV protons causes an increase in the Young’s modulus at 6 K, which is surmised to reflect a modification of the anelastic process in the GB regions. In contrast, the SAMD of f is hardly modified by irradiation, suggesting that it is indicative of a collective motion of atoms in n-Au.  相似文献   

19.
Pressure-shear plate impact experiments are used to investigate the viscoplastic response of metals at shear strain rates ranging from 105 s−1 to 107 s−1. Flat specimens with thicknesses between 300 μm and 3 μm are sandwiched between two hard, parallel plates that are inclined relative to their direction of approach. Nominal stresses and strains in the specimens are determined from elastic wave profiles monitored at the rear surface of one of the hard plates. Results are reviewed for two fcc metals: commercially pure aluminum and an aluminum alloy. New results are presented for bcc high purity iron, a high strength steel alloy and vapor deposited aluminum. For commercially pure aluminum the flow stress increases strongly with strain rate as strain rate increases from 104 s−1 to 105 s−1. At strain rates above 105 s−1 the flow stress, based on results for thin vapor-deposited aluminum specimens, increases strongly, but less than linearly, with increasing strain rate until it saturates at strain rates between 106 s−1 and 107 s−1. Preliminary results for high purity alpha-iron indicate that the flow stress increases smoothly over eleven decades of strain rate, and faster than logarithmically for strain rates from 102 s−1 to greater than 106 s−1. In contrast, for a high strength steel alloy the flow stress depends only weakly on the strain rate, even at strain rates at high as 105 s−1. Such contrasting behavior is attributed to differences in the relative importance of viscous glide and thermal activation as rate controlling mechanisms for dislocation motion in the various metals. Numerical studies indicate that experiments performed at the highest strain rates on the thinnest specimens are not adiabatic, thus requiring a full thermal-mechanical analysis in order to interpret the data.  相似文献   

20.
The effect of strain rate (10−2, 10−3 and 10−4 s−1) on the low-cycle fatigue (LCF) behavior was investigated for 17-4 PH stainless steels in three different conditions at temperatures of 300–500 °C. The cyclic stress response (CSR) for Condition A tested at 300 and 400 °C showed cyclic hardening due to an influence of dynamic strain aging (DSA). An in situ precipitation-hardening effect was found to be partially responsible for the cyclic hardening in Condition A at 400 °C. For H900 and H1150 conditions tested at 300 and 400 °C, the CSR exhibited a stable stress level before a fast drop in load indicating no cyclic hardening or softening. At 500 °C, cyclic softening was observed for all given material conditions because of a thermal dislocation recovery mechanism. The cyclic softening behavior in Conditions A and H900 tested at 500 °C is attributed partially to coarsening of the Cu-rich precipitates. The LCF life for each material condition, tested at a given temperature, decreased with decreasing strain rate as a result of an enhanced DSA effect. At all given testing conditions, transgranular cracking was the common fatigue fracture mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号