首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single‐chain anti‐EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that specifically bind to and are internalized by EGFR‐expressing cancer cells, thereby producing a fluorescent signal or magnetic resonance imaging (MRI) contrast. In vivo tumor targeting and uptake of the nanoparticles in human cancer cells is demonstrated after systemic delivery of ScFvEGFR‐QDs or ScFvEGFR‐IO nanoparticles into an orthotopic pancreatic cancer model. Therefore, ScFvEGFR nanoparticles have potential to be used as a molecular‐targeted in vivo tumor imaging agent. Efficient internalization of ScFvEGFR nanoparticles into tumor cells after systemic delivery suggests that the EGFR‐targeted nanoparticles can also be used for the targeted delivery of therapeutic agents.  相似文献   

2.
Ji L  Wu JH  Luo Q  Li X  Zheng W  Zhai G  Wang F  Lü S  Feng YQ  Liu J  Xiong S 《Analytical chemistry》2012,84(5):2284-2291
We describe herein the development of a matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry (MALDI-TOF-MS) approach for screening of protein kinase inhibitors (PKIs). MS quantification of phosphopeptides, the kinase-catalyzed products of nonphosphorylated substrates, is a great challenge due to the ion suppression effect of highly abundant nonphosphorylated peptides in enzymatic reaction mixtures. To address this issue, a novel type of titania coated magnetic hollow mesoporous silica spheres (TiO(2)/MHMSS) material was fabricated for capturing phosphopeptides from the enzymatic reaction mixtures prior to MS analysis. Under optimized conditions, even in the presence of 1000-fold of a substrate peptide of tyrosine kinase epidermal growth factor receptor (EGFR), the phosphorylated substrates at the femtomole level can be detected with high accuracy and reproducibility. With a synthetic nonisotopic labeled phosphopeptide, of which the sequence is similar to that of the phosphorylated substrate, as the internal standard, the MS signal ratio of the phosphorylated substrate to the standard is linearly correlated with the molar ratio of the two phosphopeptides in peptide mixtures over the range of 0.1 to 4 with r(2) being 0.99. The IC(50) values of three EGFR inhibitors synthesized in our laboratory were then determined, and the results are consistent with those determined by an enzyme-linked immunosorbent assay (ELISA). The developed method is sensitive, cost/time-effective, and operationally simple and does not require isotope/radioative-labeling, providing an ideal alterative for screening of PKIs as therapeutic agents.  相似文献   

3.
Non‐small cell lung cancer (NSCLC) is the most common type of lung cancer and the cause of high rate of mortality. The epidermal growth factor receptor (EGFR)‐targeted tyrosine kinase inhibitors are used to treat NSCLC, yet their curative effects are usually compromised by drug resistance. This study demonstrates a nanodrug for treating tyrosine‐kinase‐inhibitor‐resistant NSCLC through inhibiting upstream and downstream EGFR signaling pathways. The main molecule of the nanodrug is synthesized by linking a tyrosine kinase inhibitor gefitinib and a near‐infrared dye (NIR) on each side of a disulfide via carbonate bonds, and the nanodrug is then obtained through nanoparticle formation of the main molecule in aqueous medium and concomitant encapsulation of a serine threonine protein kinase (Akt) inhibitor celastrol. Upon administration, the nanodrug accumulates at the tumor region of NSCLC‐bearing mice and releases the drugs for tumor inhibition, and the dye for fluorescence and optoacoustic imaging. Through suppressing the phosphorylation of upstream EGFR and downstream Akt in the EGFR pathway by gefitinib and celastrol, respectively, the nanodrug exhibits high inhibition efficacy against orthotopic NSCLC in mouse models.  相似文献   

4.
Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over‐expressed in most cases of non‐small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab‐conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over‐expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549‐luc‐C8 lung tumors is shown using non‐invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non‐targeted drug solution, drug‐loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC‐MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors.  相似文献   

5.
Human ferritin heavy‐chain nanoparticle (hFTH) is genetically engineered to present tumor receptor‐binding peptides (affibody and/or RGD‐derived cyclic peptides, named 4CRGD here) on its surface. The affibody and 4CRGD specifically and strongly binds to human epidermal growth factor receptor I (EGFR) and human integrin αvβ3, respectively, which are overexpressed on various tumor cells. Through in vitro culture of EGFR‐overexpressing adenocarcinoma (MDA‐MB‐468) and integrin‐overexpressing glioblastoma cells (U87MG), it is clarified that specific interactions between receptors on tumor cells and receptor‐binding peptides on engineered hFTH is critical in active tumor cell targeting. After labeling with the near‐infrared fluorescence dye (Cy5.5) and intravenouse injection into MDA‐MB‐468 or U87MG tumor‐bearing mice, the recombinant hFTHs presenting either peptide or both of affibody and 4CRGD are successfully delivered to and retained in the tumor for a prolonged period of time. In particular, the recombinant hFTH presenting both affibody and 4CRGD notably enhances in vivo detection of U87MG tumors that express heterogeneous receptors, integrin and EGFR, compared to the other recombinant hFTHs presenting either affibody or 4CRGD only. Like affibody and 4CRGD used in this study, other multiple tumor receptor‐binding peptides can be also genetically introduced to the hFTH surface for actively targeting of in vivo tumors with heterogenous receptors.  相似文献   

6.
A new synthesis protocol is described to obtain a CdTe decorated magnetite bifunctional nanosystem via dodecylamine (DDA) as cross linker. High resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDAX), vibrating sample magnetometry (VSM), Fourier transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS) and fluorescence microscopy are used to characterize the constitution, size, composition and physical properties of these superparamagnetic-fluorescent nanoparticles. These CdTe decorated magnetite nanoparticles were then functionalized with anti-epidermal growth factor receptor (EGFR) antibody to specifically target cells expressing this receptor. The EGFR is a transmembrane glycoprotein and is expressed on tumor cells from different tissue origins including human leukemic cell line Molt-4 cells. The magnetite-CdTe composite nanosystem is shown to perform excellently for specific selection, magnetic separation and fluorescent detection of EGFR positive Molt-4 cells from a mixed population. Flow cytometry and confocal laser scanning microscopy results show that this composite nanosystem has great potential in antibody functionalized magnetic separation and imaging of cells using cell surface receptor antibody.  相似文献   

7.
Active tumor targeting involves the decoration of nanomaterials (NMs) with oncotropic vector biomolecules that selectively recognize certain antigens on malignant cells or in the tumor microenvironment. This strategy can facilitate intracellular uptake of NM through specific interactions such as receptor‐mediated endocytosis and can lead to prolonged retention in the malignant tissues by preventing rapid efflux from the tumor. Here, the design of actively targeting, renally excretible bimodal dendritic polyglycerols (dPGs) for diagnostic cancer imaging is described. Single‐domain antibodies (sdAbs) specifically binding to the epidermal growth factor receptor (EGFR) are employed herein as targeting warheads owing to their small size and high affinity for their corresponding antigen. The dPGs equipped with EGFR‐targeting feature are compared head‐to‐head with their nontargeting counterparts in terms of interaction with EGFR‐overexpressing cells in vitro as well as accumulation at receptor‐positive tumors in vivo. Experimental results reveal a higher specificity and preferential tumor accumulation for the α‐EGFR dPGs, resulting from the introduction of active targeting capabilities on their backbone. These results highlight the potential for improving the tumor uptake properties of dPGs by strategic use of sdAb functionalization, which can ultimately prove useful to the development of ultrasmall NM with highly specific tumor accumulation.  相似文献   

8.
The epidermal growth factor receptor (EGFR) activated extracellular-signal regulated kinase (ERK) pathway is a central cell signalling pathway that mediates many biological responses including cell proliferation, transformation, survival and motility. Deregulation of the pathway either through mutation of components or overexpression of EGFRs is associated with several forms of cancer. Under normal conditions, EGF stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown, whereas under cancerous conditions, the ERK signal cannot be shutdown and is sustained. Computational modelling techniques have been used to investigate the signalling dynamics of the EGFR/ERK pathway, focusing on identifying the key processes involved in signal termination and what role the ERK to son of sevenless (SOS) negative feedback loop plays in generating a transient response. This model predicts that this negative feedback loop is not needed to achieve a transient activation of ERK as the process of receptor degradation alone is enough to terminate the signal. Importantly, the behaviour and predictions of this model are verified with laboratory data, as is essential for modern systems biology approaches. Further analysis showed that the feedback loop and receptor degradation were both redundant processes, as each could compensate for the absence of the other. This led to the prediction that in the case of a receptor which is not degraded, such as the insulin receptor, the negative feedback loop to SOS will actually be essential for a transient response to be achieved. Overall, the results shed new light on the role of negative feedback in EGF receptor signalling and suggest that different receptors are dependent on different features within the ERK pathway when relaying their signals.  相似文献   

9.
Skala MC  Crow MJ  Wax A  Izatt JA 《Nano letters》2008,8(10):3461-3467
Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and resolution (approximately 1-10 microm). We have developed and characterized photothermal OCT as a molecular contrast mechanism that allows for high resolution molecular imaging at deeper penetration depths than microscopy. Our photothermal system consists of an amplitude-modulated heating beam that spatially overlaps with the focused spot of the sample arm of a spectral-domain OCT microscope. Validation experiments in tissuelike phantoms containing gold nanospheres that absorb at 532 nm revealed a sensitivity of 14 ppm nanospheres (weight/weight) in a tissuelike environment. The nanospheres were then conjugated to anti-EGFR, and molecular targeting was confirmed in cells that overexpress EGFR (MDA-MB-468) and cells that express low levels of EGFR (MDA-MB-435). Molecular imaging in three-dimensional tissue constructs was confirmed with a significantly lower photothermal signal (p<0.0001) from the constructs composed of cells that express low levels of EGFR compared to the overexpressing cell constructs (300% signal increase). This technique could potentially augment confocal and multiphoton microscopy as a method for deep-tissue, depth-resolved molecular imaging with relatively high resolution and target sensitivity, without photobleaching or cytotoxicity.  相似文献   

10.
A recently reported ionization method, comprising an infrared (IR) laser pulse to desorb (LD) analyte species, followed by atmospheric pressure chemical ionization (APCI) with a corona discharge (LD-APCI) to effect ionization of the desorbed neutral analyte molecules, is described for the direct analysis of aqueous peptide solutions. The source employs a heated capillary atmospheric pressure (AP) inlet coupled to a quadrupole ion trap mass spectrometer and allows sampling under normal ambient air conditions. By use of the corona discharge, signals of the atmospheric pressure infrared matrix-assisted laser desorption/ionization (AP-IR-MALDI)-generated analyte protonated molecule were enhanced by factors as large as 1400. In addition, the acid modifier trifluoroacetic acid (TFA) was found to improve the AP-IR-MALDI-generated signal by a factor of approximately 10, whereas the LD-APCI generated signal yielded a 100-fold increase. In this study, the use of the corona discharge is described to enhance the analyte signal generated via AP-IR-MALDI and, as a tool, to probe the gas-phase neutral molecule population generated by the MALDI process. Finally, through the decoupling of desorption from ionization, implications regarding the application of LD-APCI for the direct analysis of numerous new analyte containing matrixes (e.g., polyacrylamide gel electrophoresis (PAGE), tissue, etc.) are discussed.  相似文献   

11.
Chen JY  Li M  Penn LS  Xi J 《Analytical chemistry》2011,83(8):3141-3146
Epidermal growth factor receptors (EGFRs) have often shown two distinct binding affinities for epidermal growth factor. It is the high-affinity EGFR that is predominantly responsible for mediating the cell signaling that plays an indispensable role in cell growth, proliferation, motility, and differentiation. We applied the quartz crystal microbalance with dissipation monitoring (QCM-D) to track short-term cellular responses to EGFR signaling in human carcinoma A431 cells. Cellular responses to high- and low-affinity EGFR signaling were detected individually as well as simultaneously based on changes in mass and viscoelasticity of cells. These responses are associated with EGF-induced biological processes including the cytoskeleton remodeling and calcium influx. QCM-D provides a label-free sensor technology that can be exploited to investigate the role of high-affinity EGFR in cancer development and cancer prognosis.  相似文献   

12.
Monitoring the location, distribution and long-term engraftment of administered cells is critical for demonstrating the success of a cell therapy. Among available imaging-based cell tracking tools, magnetic resonance imaging (MRI) is advantageous due to its noninvasiveness, deep penetration, and high spatial resolution. While tracking cells in preclinical models via internalized MRI contrast agents (iron oxide nanoparticles, IO-NPs) is a widely used method, IO-NPs suffer from low iron content per particle, low uptake in nonphagocytotic cell types (e.g., mesenchymal stem cells, MSCs), weak negative contrast, and decreased MRI signal due to cell proliferation and cellular exocytosis. Herein, we demonstrate that internalization of IO-NP (10 nm) loaded biodegradable poly(lactide-co-glycolide) microparticles (IO/PLGA-MPs, 0.4-3 μm) in MSCs enhances MR parameters such as the r(2) relaxivity (5-fold), residence time inside the cells (3-fold) and R(2) signal (2-fold) compared to IO-NPs alone. Intriguingly, in vitro and in vivo experiments demonstrate that internalization of IO/PLGA-MPs in MSCs does not compromise inherent cell properties such as viability, proliferation, migration and their ability to home to sites of inflammation.  相似文献   

13.
肿瘤细胞增殖与骨吸收之间的恶性循环加剧了骨肿瘤的进展和转移风险.为此,我们设计并制备了聚乙二醇-阿仑膦酸钠修饰的聚多巴胺(PPA)纳米粒子,并在其表面负载自噬抑制剂氯喹(CQ),期望利用该治疗载体(PPA/CQ)打破肿瘤细胞增殖与骨吸收之间的恶性循环,从而有效地治疗骨肿瘤.实验证明,PPA/CQ可以有效地富集到骨组织,...  相似文献   

14.
Epidermal growth factor (EGF) signalling regulates normal epithelial and other cell growth, with EGF receptor (EGFR) overexpression reported in many cancers. However, the role of EGFR clusters in cancer and their dependence on EGF binding is unclear. We present novel single-molecule total internal reflection fluorescence microscopy of (i) EGF and EGFR in living cancer cells, (ii) the action of anti-cancer drugs that separately target EGFR and human EGFR2 (HER2) on these cells and (iii) EGFR–HER2 interactions. We selected human epithelial SW620 carcinoma cells for their low level of native EGFR expression, for stable transfection with fluorescent protein labelled EGFR, and imaged these using single-molecule localization microscopy to quantify receptor architectures and dynamics upon EGF binding. Prior to EGF binding, we observe pre-formed EGFR clusters. Unexpectedly, clusters likely contain both EGFR and HER2, consistent with co-diffusion of EGFR and HER2 observed in a different model CHO-K1 cell line, whose stoichiometry increases following EGF binding. We observe a mean EGFR : EGF stoichiometry of approximately 4 : 1 for plasma membrane-colocalized EGFR–EGF that we can explain using novel time-dependent kinetics modelling, indicating preferential ligand binding to monomers. Our results may inform future cancer drug developments.  相似文献   

15.
The epidermal growth factor receptor (EGFR) is a major target for drugs in treating lung carcinoma. Mutations in the tyrosine kinase domain of EGFR commonly arise in human cancers, which can cause drug sensitivity or resistance by influencing the relative strengths of drug and ATP-binding. In this study, we investigate the binding affinities of two tyrosine kinase inhibitors—AEE788 and Gefitinib—to EGFR using molecular dynamics simulation. The interactions between these inhibitors and the EGFR kinase domain are analysed using multiple short (ensemble) simulations and the molecular mechanics/Poisson–Boltzmann solvent area (MM/PBSA) method. Here, we show that ensemble simulations correctly rank the binding affinities for these systems: we report the successful ranking of each drug binding to a variety of EGFR sequences and of the two drugs binding to a given sequence, using petascale computing resources, within a few days.  相似文献   

16.
Gold nanocages (AuNCs) and gold nanoclusters (AuClusters) are two classes of advantageous nanostructures with special optical properties, and many other attractive properties. Integrating them into one nanosystem may achieve greater and smarter performance. Herein, a hybrid gold nanostructure for fluorescent and optoacoustic tomography imaging, controlled release of drugs, and photothermal therapy (PTT) is demonstrated. For this nanodrug (EA–AB), an epidermal growth factor receptor (EGFR) inhibitor erlotinib (EB) is loaded into AuNCs, which are then capped and functionalized by biocompatible AuCluster@BSA (BSA = bovine serum albumin) conjugates via electrostatic interaction. Upon cell internalization, the lysosomal proteases and low pH cause the release of EB from EA–AB, and also induce fluorescence restoration of the AuCluster for imaging. Irradiation with near‐infrared light further promotes the drug release and affords a PTT effect as well. The AuNC‐based nanodrug is optoacoustically active, and its biodistribution and metabolic process have been successfully monitored by whole‐body and 3D multispectral optoacoustic tomography imaging. Owing to the combined actions of PTT and EGFR pathway blockage, EA–AB exhibits marked tumor inhibition efficacy in vivo.  相似文献   

17.
Despite surgical advances and recent progress in adjuvant therapies, the prognosis for patients with malignant brain tumors such as glioblastoma multiforme has remained poor, and the neurological deterioration suffered by most patients as a consequence of tumor progression is dramatic and severe. In addition, malignant brain tumors have ≫95% recurrence close to the primary site of initial resection. Unfortunately, standard imaging techniques do not permit the intraoperative identification of individual or small clusters of residual tumor cells, precluding their selective removal while sparing the surrounding normal brain tissue. In this report, we show that quantum dots (QDs) coupled to epidermal growth factor (EGF) or anti-EGF receptor receptor (EGFR, Her1) specifically and sensitively label glial tumor cells in cell culture, glioma mouse models, and human brain–tumor biopsies. A clear demarcation between brain and tumor tissue at the macroscopic as well as the cellular level is provided by the fluorescence emission of the QDs.   相似文献   

18.
Epidermal growth factor receptor (EGFR) is a cell surface protein overexpressed in cancerous cells. It is known to be the most common oncogene. EGFR concentration also increases in the serum of cancer patients. The detection of small changes in the concentration of EGFR can be critical for early diagnosis, resulting in better treatment and improved survival rate of cancer patients. This article reports an RNA aptamer based approach to selectively capture EGFR protein and an electrical scheme for its detection. Pairs of gold electrodes with nanometer separation were made through confluence of focused ion beam scratching and electromigration. The aptamer was hybridized to a single stranded DNA molecule, which in turn was immobilized on the SiO(2) surface between the gold nanoelectrodes. The selectivity of the aptamer was demonstrated by using control chips with mutated non-selective aptamer and with no aptamer. Surface functionalization was characterized by optical detection and two orders of magnitude increase in direct current (DC) was measured when selective capture of EGFR occurred. This represents an electronic biosensor for the detection of proteins of interest for medical applications.  相似文献   

19.
The efficacy of therapeutics for brain tumors is seriously hampered by multiple barriers to drug delivery, including severe destabilizing effects in the blood circulation, the blood–brain barrier/blood–brain tumor barrier (BBB/BBTB), and limited tumor uptake. Here, a sequential targeting in crosslinking (STICK) nanodelivery strategy is presented to circumvent these important physiological barriers to improve drug delivery to brain tumors. STICK nanoparticles (STICK-NPs) can sequentially target BBB/BBTB and brain tumor cells with surface maltobionic acid (MA) and 4-carboxyphenylboronic acid (CBA), respectively, and simultaneously enhance nanoparticle stability with pH-responsive crosslinkages formed by MA and CBA in situ. STICK-NPs exhibit prolonged circulation time (17-fold higher area under curve) than the free agent, allowing increased opportunities to transpass the BBB/BBTB via glucose-transporter-mediated transcytosis by MA. The tumor acidic environment then triggers the transformation of the STICK-NPs into smaller nanoparticles and reveals a secondary CBA targeting moiety for deep tumor penetration and enhanced uptake in tumor cells. STICK-NPs significantly inhibit tumor growth and prolong the survival time with limited toxicity in mice with aggressive and chemoresistant diffuse intrinsic pontine glioma. This formulation tackles multiple physiological barriers on-demand with a simple and smart STICK design. Therefore, these features allow STICK-NPs to unleash the potential of brain tumor therapeutics to improve their treatment efficacy.  相似文献   

20.
A series of surface-enhanced resonance Raman scattering (SERRS) based probes for the detection of lipase activity are reported. A number of novel SERRS-active 8-hydroxylquinolinyl azo dyes have been prepared and via synthetic esterification or subsequent enzymatic hydrolysis at the 8-hydroxyl position the SERRS signal can be "switched" on or off. In the first instance, the technique has been demonstrated for the successful detection of lipase from Pseudomonas cepacia, and these new compounds offer a limit of detection of 0.2 ng mL-1 enzyme, up to a 100-fold lower limit than observed for benzotriazolyl dyes used in previous studies. The chemical synthesis is straightforward and allows for facile introduction of a wide range of different masking groups, using commonly known synthetic methodologies. The potential for multiplexing analysis of enzyme activity using this technology is presented within.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号