首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the last years, metallic crushers substituted granite stone mill with some variations in the organoleptic oil characteristics. To control the influence of the crushing method on the yield and oil quality, the olive pastes were obtained using three different ways: (i) new metallic crusher at mobile knives; (ii) granite stone mill; (iii) double olive crushing by the metallic crusher and the granite stone mill. With the aim to ascertain the useful use of a new metallic crusher (at mobile knives), experimental tests were carried out in an industrial oil mill. This oil mill is equipped by a centrifugal decanter generating two oil flows: first and second extraction (recovery) oils. The results showed that the yields obtained by different methods were satisfactory. No statistically significant differences have been observed in terms of oil yield and quality when different crushing devices were used. All first extracted oils are extra virgin with similar organoleptic characteristics, especially for the fruity intensity and for the bitter and pungent taste, as confirmed by the composition of volatile substances and the content of phenolic oil compounds. The recovery oils (second extraction oils) showed, in contrast to first extraction oils, a more intense green colour and a higher content of total phenols. Practical applications: Processing of sound olives with the right ripening grade and good quality allows to easily obtain an extra virgin olive oil, with commercial qualitative parameters according to the European Union requirements. However, different olive crushing systems affect the concentrations of some compounds responsible of aroma and taste (phenolic compounds). The use of the more violent metallic crushers facilitates obtaining oils with total phenol content higher than when using a stone mill. Here we used a particular metallic crusher (at knives) that, however, is suitable to replace the granite stone mill when a less pungent and bitter oil is required.  相似文献   

2.
A method involving reversed-phase high-performance liquid chromatography with amperometric detection has been developed for the analysis of tocopherols and tocotrienols in vegetable oils. The sample preparation avoids saponification. Recoveries of α-tocotrienol and γ-tocotrienol in extra virgin olive oil were 97.0 and 102.0%, respectively. No tocotrienols were detected in olive, hazelnut, sunflower, and soybean oils, whether virgin or refined. However, relatively high levels of tocotrienols were found in palm and grapeseed oils. This method could detect small quantities (1–2%) of palm and grapeseed oils in olive oil or in any tocotrienol-free vegetable oil and might, therefore, help assess authenticity of vegetable oils.  相似文献   

3.
The aim of this work was to determine the effect of the climatological conditions of the olive crop season on the composition of monovarietal virgin olive oils obtained from the Arbequina cultivar with special emphasis on the phenolic fraction, its percent distribution, and related oil quality parameters such as oxidative stability and bitter index. The main differences were due to freeze injuries caused by low temperatures in December 2001. The levels of chlorophylls and carotenoids in olive oil or pulp from frost-damaged olive trees were lower as a consequence of faster ripening. The olive oil extracted from frost-damaged olive pulp had lower contents of secoiridoid and especially lower levels of 3,4-DHPEA-EDA (the dialdehydic form of elenolic acid linked to hydroxytyrosol). In the following crop seasons, a significant increase in phenolic compounds, especially in secoiridoid derivatives such as 3,4-DHPEA-EDA, was observed. This increase may be due to the fact that olive trees that suffered frost damage in December 2001 were more sensitive to stress caused by the water deficit during summer in the subsequent crop seasons, which is usual in this olive-growing region. Moreover, important correlation coefficients were observed between the main secoiridoid derivative compound (3,4-DHPEA-EDA) and oxidative stability and the bitter index.  相似文献   

4.
The effect of a linear (vs. effective crop coefficient, K c), irrigation strategy applied to young olive trees (Arbequina cv.) on the qualitative and quantitative parameters of virgin olive oil quality was studied. Although linear irrigation strategy did not affect the quality indexes used to classify olive oil by commercial grades, it did influence other important parameters such as total phenol content, bitter index oxidative stability, and the sensorial appraisal. All of these of olive oil qualities were negatively associated with the amount of applied irrigation water. Pigment content of oils determined by carotenoid and chlorophylls also was negatively associated with the amount of water supplied. No consistent relation was found for α-tocopherol and fatty acid content of olive oil in relation to these treatments.  相似文献   

5.
In recent years a growing demand for agricultural produce with an identifiable geographical origin has developed. The aim of this work was to study differences in quality and composition of virgin olive oils produced over four consecutive crop seasons in the region of the protected designation of origin “Les Garrigues” (Catalonia, Spain), taking the harvesting period and the climatic conditions of the year into consideration. The results obtained in this study indicate that virgin olive oil composition is greatly influenced by climatic conditions, mainly the cumulative rainfall in the case of FA composition and phenolic compounds, and the minimum temperatures during harvest period in the case of chlorophyll, carotenoid pigments, and α-tocopherol content. The harvest period influenced most of the parameters analyzed, apart from the PV and FFA content. Prediction models for carotenoid pigment content, oxidative stability, and bitter index were found.  相似文献   

6.
A large number of virgin olive oil samples obtained from different areas in Greece were analyzed for various quality parameters. The work focuses on the colorimetric determination of total phenols with the Folin‐Ciocalteu reagent and its importance in predicting shelf life of virgin olive oil. The results indicate a good correlation of total polar phenol content with the stability of the oil. Colorimetric determination of ortho‐diphenol content does not seem to be a better means for predicting virgin olive oil stability. RP‐HPLC quantification of hydroxytyrosol and tyrosol in their free form gives poor results in the case of freshly extracted oils. It is concluded that until an easy‐to‐manage HPLC method will be available, which will quantify accurately both free and bound forms of hydroxytyrosol and other phenolics, the colorimetric method for the determination of total polar phenols remains a good practical means to evaluate the stability of virgin olive oil.  相似文献   

7.
The adulteration of extra virgin olive oil with cheaper oils is a major problem in the olive oil market. In this study, near-infrared, mid-infrared, and Raman spectroscopic techniques were used to quantify the amount of olive pomace oil adulteration in extra virgin olive oil. The concentration of olive pomace oil in extra virgin olive oil was in the range between 0 and 100% in 5% increments by weight. Of the methods studied, Fourier transform-Raman spectroscopy gave the highest correlation with a correlation coefficient of 0.997 and a standard error of prediction of 1.72%. The spectroscopic techniques have the potential to become a tool for rapid determination of adulteration in extra virgin olive oil, because they are casy to use and cost-effective.  相似文献   

8.
In recent years, phenolic acids have received considerable attention as they are essential to olive oil quality and nutritional properties. This study aims to validate a rapid and sensitive method based on ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC–TOF‐MS) for analyzing the phenolic acid content of olive oil and assessing its impact on virgin olive oil (VOO) sensory attributes. Once this method was validated, we used it to evaluate the phenolic acid composition of several Spanish monovarietal virgin olive oils in relation to nine different olive ripening stages. The results obtained confirm that the methodology developed in this study is valid for extracting and analyzing phenolic acids from VOO. The phenolic acid content of the virgin olive oils sampled was proven to be influenced by the type of cultivar and olive harvest date. Therefore, phenolic acids might be used as potential markers for olive oil cultivar or ripening stage. Finally, the data obtained indicate that the sensory properties of VOO may be differently affected by its phenolic acid content depending on the type of cultivar. Practical applications: The method validated in the present study – based on UPLC‐TOF‐MS – allows experts to assess the phenolic acid content of different VOO cultivars (varieties). This application will probably be very useful to the olive oil industry. The reason is that our study revealed that phenolic acids have an impact on the sensory quality of VOO, which is essential to consumer preferences and choice. In addition, there are phenolic acids that are only found in a particular variety of olive oil obtained from fruits at a specific ripening stage. Consequently, phenolic acids could be used as potential markers for olive oil variety and harvest time.  相似文献   

9.
The present study focuses on the olefinic region of the 13C nuclear magnetic resonance (13C NMR) spectrum of virgin olive oil which shows 12 peaks resonating between 127.5 and 130 ppm. These peaks are assigned to the most abundant unsaturated fatty acid moieties of the olive oil, oleic and linoleic acids, which are present in α and β positions of the glycerol backbone. With the use of an internal reference pyrazine, the 12 peaks were integrated and their areas were expressed in mmol/g of virgin olive oil. The intensities of the 12 observed peaks were affected when an authentic virgin olive oil was mixed with a seed oil. This observation was used to develop a semiquantitative method to detect adulteration of virgin olive oil by other oils based on 13C NMR spectroscopy.  相似文献   

10.
11.
13C Nuclear magnetic resonance (NMR) spectra of 104 oil samples were obtained and analyzed in order to study the use of this technique for routine screening of virgin olive oils. The oils studied included the following: virgin olive oils from different cultivars and regions of Europe and north Africa, and refined olive, “lampante” olive, refined olive pomace, high-oleic sunflower, hazelnut, sunflower, corn, soybean, rapeseed, grapeseed, and peanut oils, as well as mixtures of virgin olive oils from different geographical origins and mixtures of 5–50% hazelnut oil in virgin olive oil. The analysis of the spectra allowed us to distinguish among virgin olive oils, oils with a high content of oleic acid, and oils with a high content of linoleic acid, by using stepwise discriminant analysis. This parametric method gave 97.1% correct validated classifications for the oils. In addition, it classified correctly all the hazelnut oil samples and the mixtures of hazelnut oil in virgin olive oil assayed. All of these results suggested that 13C NMR may be used satisfactorily for discriminating some specific groups of oils, but to obtain 100% correct classifications for the different oils and mixtures, more information than that obtained from the direct spectra of the oils is needed.  相似文献   

12.
The antioxidant effects of hydrophilic phenols and tocopherols on the oxidative stability in virgin olive oils and in purified olive oil have been evaluated. Total hydrophilic phenols and the oleosidic forms of 3,4-dihydroxyphenolethanol (3,4-DHPEA) were correlated (r=0.97) with the oxidative stability of virgin olive oil. On the contrary, tocopherols showed low correlation (r=0.05). Purified olive oil with the dialdehydic form of elenolic acid linked to 3,4-DHPEA, an isomer of oleuropeine aglycon, and 3,4-DHPEA had good oxidative stability. A synergistic effect was observed in the mixture of 3,4-DHPEA and its oleosidic forms with α-tocopherol in purified olive oil by the Rancimat method at 120°C.  相似文献   

13.
The antioxidant properties of some single components and the total antioxidant activity of extra‐virgin olive oil have been evaluated by the oxygen radical absorbance capacity (ORAC) method. The total ORAC of the extra‐virgin olive oil was found to be positively correlated with the concentration of total polyphenols, which are important to the shelf life of the product. Among the single phenolic compounds studied, gallic acid showed a higher ORAC than caffeic acid and oleuropein, while among the derivates of oleuropein, hydroxytyrosol was found to be the most active compound among all the phenols studied. The total ORAC of commercial olive oils differed according to the concentration of total polyphenols. The total ORAC of extra‐virgin olive oil was constant during 1 year of storage in rational conditions, whereas it worsened dramatically in olive oil damaged by the lipase‐producing yeast Williopsis californica or by lipase from Pseudomonas spp. The study accomplished on the oily fraction of the fruits before harvesting demonstrated that the total ORAC of the oil of under‐ripe green olives is higher compared to that shown by mature fruits; therefore, through the choice of the harvesting time, it is possible to define also the future content of polyphenols of the oil. The total ORAC test, together with other analyses, can be considered as a qualitative parameter that can contribute to the expression of technological and health virtues of extra‐virgin olive oil.  相似文献   

14.
Adulteration of extra virgin olive oil (EVOO) by addition of other vegetable oils or lower-grade olive oils is a common problem of the oil market worldwide. Therefore, we developed a fast protocol for detection of EVOO adulteration by mass spectrometry fingerprinting of triacylglycerol (TAG) profiles based on MALDI-TOF/MS. For that purpose, EVOO TAG profiles were compared with those of edible sunflower oil and olive oil composed of refined olive oil and virgin olive oils. Adulteration of EVOO was simulated by addition of sunflower and mixture of refined olive oil and virgin olive oils at 1, 10 and 20% w/w. Results of mass spectrometry TAG profiling were compared with routinely assessed K values for identification of adulteration. MALDI-TOF/MS technology coupled with statistical analysis was proven as useful for detection of adulteration in EVOO at a rate down to 1%. In contrast, standard spectrophotometric methods failed to identify minor adulterations. In addition, the ability of MALDI-TOF/MS in detection of adulteration was tested on EVOO samples from different geographical regions. Results demonstrated that MALDI-TOF/MS technology coupled with statistical analysis is able to distinguish adulterated oils from other EVOO.  相似文献   

15.
A new color scale was developed from a broad data set of 1700 virgin olive oil samples over four crop seasons, which can be considered highly representative of the whole color range of virgin olive oils available in Spain. This color scale provides a new set of 60 color standards, improving the results achieved by the old 60-color standards proposed by the bromthymol blue method. Seeking the greatest possibility of including a near match between colors of virgin olive oils and proposed standards, we developed our new color scale using a recent uniform color space, with standards placed in a regular rhombohedral lattice like the one employed by the Uniform Color Scales of the Optical Society of America. The average color difference between each of the 1700 virgin olive oils and its nearest standard is reduced from 8.17 CIELAB units, using the bromthymol blue standards, to 3.99 CIELAB units using the new standards. Within a color tolerance of 7.0 CIELAB units, 93.2% of our virgin olive oils can be classified with the new standards, but only 59.1% with the bromthymol blue ones. In the interest of future adoption, the performance of the new color standards should be tested by industry and researchers.  相似文献   

16.
Olive Oil Types and their Characteristics – Regulations of the European Community In the European Community new definitions and declarations for olive oil and olive residue oil were introduced (Regulation EEC No 356/92). In order to distinguish the different olive oil types and to protect their quality and purity. identity and quality characteristics were fixed (Regulation EEC No 2568/91). They include limits for the fatty acid composition, free fatty acids, aliphatic alcohols, content and composition of sterols, erythrodiol + uvaol, peroxide value, saturated fatty acids in 2-position of the triglycerides, trilinolein und ultraviolet spectrophotometric limits. Analytical methods for their determination are prescribed. Furthermore organoleptic characteristics for virgin olive oils were introduced. The organoleptic assessment is based on a panel test, developed by the International Olive Oil Council, which provides a grading of 1–9 points. Based on the new limits the regulation contains additional notes to chapter 15 of the combined nomenclature which is used in connection with the common customs tarif. Classification, characteristics and analytical procedures are discussed.  相似文献   

17.
High-field (600 MHz) nuclear magnetic resonance (NMR) spectroscopy was applied to the direct analysis of virgin olive oil. Minor components were studied to assess oil quality and genuineness. Unsaturated and saturated aldehyde resonances, as well as those related to other volatile compounds, were identified in the low-field region of the spectrum by two-dimensional techniques. Unsaturated aldehydes can be related to the sensory quality of oils. Other unidentified peaks are due to volatile components, because they disappear after nitrogen fluxing. The statistical analysis performed on the intensity of these peaks in several oil samples, obtained from different olive varieties, allows clustering and identification of oils arising from the same olive variety. Diacylglycerols, linolenic acid, other volatile components, water, acetic acid, phenols, and sterols can be detected simulteneously, suggesting a useful application of high-field NMR in the authentication and quality assessment of virgin olive oil.  相似文献   

18.
The effect of cultivar and ripeness stage on the potential nutritional value of monovarietal extra virgin olive oils (MEVOOs) obtained from Cordovil, Carrasquinha, Verdeal, and Negrinha do Freixo cultivars was investigated. MEVOOs produced were characterized by high oleic acid (72–83%), tocopherol (182–530 mg/kg), and phenolic compounds (326–1110 mg/kg) content and by a similar polyphenolic profile. 1‐Penten‐3‐one was found to be the compound with the highest contribution for the aroma of the four MEVOO, related to bitter, pungent, and leaf attributes. MEVOO from Verdeal cultivar showed the best performance in terms of the composition: the highest yield of oil, the highest content of oleic acid, high tocopherol, polyphenol and sterol content, and the lowest content of linoleic acid. These characteristics give to these MEVOO not only a great oxidative stability but also interesting properties from the health point of view. MEVOO obtained with fruits at the maturity index of around 4 were in general richer in beneficial minor compounds. MEVOO produced were discriminated by variety and ripeness stage, using a stepwise linear discriminant analysis. This discrimination will in the future enable the prevention of adulteration of these monovarietal olive oils with specific nutritional composition with other olive oils. Practical implications: High‐quality MEVOOs have recently been introduced in the market, which for growers is a practical way to differentiate and increase the commercial value of extra virgin olive oil. The quantification of major and minor olive oil compounds in monovarietal olive oils represents an objective way of predicting the sensory characteristics, stability, and potential health benefits of the oils, as well as preventing their adulteration with other olive oils. This study will help in the selection of olive varieties during the maintenance or development of new olive orchards and also to select optimum harvest period for these varieties, in order to obtain MEVOOs with the maximum quality and health benefits for consumers.  相似文献   

19.
Analysis of the polar fraction from virgin olive oil and pressed hazelnut oil by high-performance liquid chromatography showed marked differences in the chromatograms of the polar components in the two oils. Six commercial samples of pressed hazelnut oil and 12 samples of virgin olive oil (or blended olive oil including virgin olive oil) were analyzed. The phenolic content of the pressed hazelnut oil samples was 161±6 mg·kg−1. Inspection of the chromatograms showed that the pressed hazelnut oil extracts contained a component that eluted in a region of the chromatogram that was clear in the olive oil samples, and consequently this component could be used to detect adulteration of virgin olive oil by pressed hazelnut oil. The component had a relative retention time of 0.9 relative to 4-hydroxybenzoic acid added to the oil as an internal standard. The ultraviolet spectrum of the component showed a maximum at 293.8 nm, but the component could not be identified. Analysis of blends of oils showed that adulteration of virgin olive oil by commercial pressed hazelnut oil could be detected at a level of about 2.5%.  相似文献   

20.
The induction period (IP), determined using accelerated methods such as the Rancimat test, is a parameter that has been used to predict the shelf life of virgin olive oil. The oxygen radical absorbance capacity (ORAC) has recently been proposed as a quality index of virgin olive oil because it measures the efficiency of phenolic compounds in the protection against peroxyl radicals. This study aims to investigate relationships between the ORAC and IP values and proposes ORAC as a new parameter of virgin olive oil stability. The concentrations of phenolics, o-diphenols, tocopherol, β-carotene, lutein, and ORAC and IP values were determined in 33 virgin olive oils. Regression analyses showed that both ORAC and IP values correlate with total phenols and o-diphenols with highly significant indices, whereas the correlations of both ORAC and IP with tocopherols, β-carotene, and lutein were not significant. The ORAC values correlate with the IP values with low but significant indices (R=0.42; P<0.02). The results confirm the key role of phenolic compounds in accounting for the shelf life of virgin olive oil and suggest that the ORAC parameter may be used as a new index of quality and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号