首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The cationic polymerization initiated by oxoaminium perchlorate groups introduced onto ultrafine silica surface was investigated. The oxoaminium perchlorate groups were successfully introduced by treatment of nitroxyl radicals on silica surface with perchloric acid. The introduction of the nitroxyl radicals was achieved by reaction of 4-hydroxy-2,2,6,6-tetramethyl-piperidinyloxy radical with acid anhydride groups on the surface. The cationic polymerization of isobutyl vinyl ether, N-vinylcarbazole, 2,3-dihydrofuran, and -butyrolactone was initiated by oxoaminium perchlorate groups introduced onto the surface and the corresponding polymers were grafted onto the surface through the propagation of grafted polymer chain from the surface oxoaminium perchlorate groups.  相似文献   

2.
Summary The effect of initiating groups introduced onto silica surface on the molecular weight of grafted polystyrene chain was investigated. By the treatment of polystyrene-grafted silica with aqueous solution of alkali, surface grafted polystyrene was isolated from the surface. The molecular weight of polystyrene grafted onto the silica obtained from the radical graft polymerization initiated by peroxyester groups introduced onto the surface was found to be much larger than that from the cationic polymerization initiated by acylium perchlorate groups. The number of grafted polystyrene in the radical polymerization, however, was much less than that in the cationic polymerization. Furthermore, the effect of molecular weight of grafted polystyrene on the dispersibility of silica in tetrahydrofuran was examined.  相似文献   

3.
The cationic graft polymerization of several monomers initiated by acylium perchlorate groups introduced onto the carbon fiber surface was investigated to modify the surface. The introduction of acylium perchlorate groups was successfully achieved by the reaction of silver perchlorate with acyl chloride groups, which were introduced by the reaction of surface carboxyl groups with thionyl chloride. It was found that the cationic polymerization of styrene is initiated by acylium perchlorate groups on the carbon fiber. In the polymerization, polystyrene was grafted onto the carbon fiber surface through the propagation of polystyrene from the surface. Ungrafted polymer was also formed by the chain transfer reaction of growing polymer cation to the monomer. The acylium perchlorate groups have the ability to initiate cationic ring-opening polymerization of tetrahydrofuran (THF) and ε-caprolactone (CL), polyTHF and polyCL being grafted onto the carbon fiber surface, respectively. Polyacetals, such as poly(1,3-dioxolane) and polyoxymethylene, were able to graft onto the carbon fiber by cationic ring-opening polymerization of the corresponding monomers.  相似文献   

4.
The surface grafting of polymers onto a glass plate surface was achieved by the polymerization of vinyl monomers initiated by initiating groups introduced onto the surface. Azo groups were introduced onto the glass plate surface by the reaction of 4,4′-azobis(4-cyanopentanoic acid) with isocyanate groups, which were introduced by the treatment with tolylene-2,4-diisocyanate. The radical polymerization of various vinyl monomers was initiated by azo groups introduced onto the glass plate surface and the corresponding polymers were grafted from the surface: The surface grafting of polymers was confirmed by IR spectra, and the contact angle of surface, with water. The contact angle of the glass plate increased by the grafting of hydrophobic polymers, but decreased by the grafting of hydrophilic polymers. The radical postpolymerization was successfully initiated by the pendant peroxycarbonate groups of grafted polymer on the surface to give branched polymer-grafted glass plate. The cationic polymerization of vinyl monomers was also successfully initiated by benzylium perchlorate groups introduced onto the glass plate surface and the corresponding polymers were grafted onto the surface. The contact angle of the glass plate surface obtained from the cationic polymerization of styrene was larger than that obtained from the radical polymerization. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 2165–2172, 1997  相似文献   

5.
For the purpose of the prevention of the environmental pollution and the simplification of reaction process, the scale-up synthesis of polymer-grafted silica nanoparticle by surface initiated cationic ring-opening graft polymerization of 2-methyl-2-oxazoline (MeOZO) in a solvent-free dry-system was investigated. The introduction of iodopropyl groups onto the silica surface as initiating group was carried out by the reaction of silanol groups with 3-iodopropyl- trimethoxysilane in a solvent-free dry-system. The graft polymerization of MeOZO onto silica nanoparticle surface in a solvent-free dry-system was initiated by spraying the monomer onto the surface having iodopropyl groups and the polymerization was conducted in powder fluid system under nitrogen. After the polymerization, unreacted MeOZO was readily removed under high vacuum. It was found that the cationic ring-opening polymerization of MeOZO was successfully initiated in the solvent-free dry-system to give polyMeOZO-grafted silica nanoparticles. The maximum grafting of polyMeOZO obtained from the polymerization initiated by iodopropyl groups on the surface reached 47.7 %. The percentage of grafting and grafting efficiency during the cationic ring-opening graft polymerization in the solvent-free dry-system were considerably larger than those in solution system. This suggests that chain transfer reaction from surface growing cation to monomer was effectively inhibited in the solvent-free dry-system.  相似文献   

6.
The surface grafting of polymers onto carbon thin film deposited on a glass plate was achieved by two methods: the graft polymerization initiated by initiating groups introduced onto the surface; and the trapping of polymer radicals by surface aromatic rings of the thin film. It was found that the radical and cationic graft polymerization of vinyl monomers are initiated by azo and acylium perchlorate groups introduced onto the surface, respectively, and the corresponding polymers are grafted onto the surface: the surface grafting of polymers were confirmed by the contact angle of the surface with water. In addition, the anionic ring-opening alternating copolymerization of epoxides with cyclic acid anhydrides was found to be initiated by potassium carboxylate groups on the carbon thin film to give the corresponding polyester-grafted carbon thin film. On the other hand, polymer radicals formed by the decomposition of azo polymer, such as poly(polydimethylsiloxane-azobiscyanopentanoate) and poly(polyoxyethylene-azobiscyanopentanoate), were successfully trapped by the surface aromatic rings of carbon thin film and polydimethylsiloxane and polyoxyethylene were grafted onto the surface. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The introduction of peroxycarbonate groups onto a silica surface and the graft polymerization of vinyl monomers initiated by peroxycarbonate groups introduced onto a silica surface were investigated. The introduction of peroxycarbonate groups onto a silica surface was achieved by Michael addition of amino groups introduced onto the silica surface to t‐butylperoxy‐2‐methacryloyloxyethylcarbonate (HEPO). The amount of peroxycarbonate groups was determined to be 0.17 mmol/g. The graft polymerization of various vinyl monomers such as styrene (St), N‐vinyl‐2‐pyrrolidinone (NVPD), and 2‐hydroxyethyl methacrylate (HEMA) was initiated by peroxycarbonate groups introduced onto the silica surface to give the corresponding polymer‐grafted silicas. The percentage of poly(St)‐grafting reached about 120% after 5 h. This means that 1.20 g of poly(St) is grafted onto 1.0 g of silica. The surface of poly(St)‐grafted silica shows a hydrophobic nature, but the surfaces of poly(NVPD) and poly(HEMA)‐grafted silica show a hydrophilic nature. Furthermore, the poly(St)‐grafted silica was found to give a stable colloidal dispersion in a good solvent for the grafted polymer. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1491–1497, 1999  相似文献   

8.
To control the surface wettability of nano-sized silica surface, the postgrafting of hydrophilic and hydrophobic polymers to grafted polymer chains on the surface was investigated. Polymers having blocked isocyanate groups were successfully grafted onto nano-sized silica surface by the graft copolymerization of methyl methacrylate (MMA) with 2-(O-[1′-methylpropylideneamino]caboxyamino)ethyl methacrylate (MOIB) initiated by azo groups previously introduced onto the surface. The blocked isocyanate groups of poly(MMA-co-MOIB)-grafted silica were stable in a desiccator, but isocyanate groups were readily regenerated by heating at 150 °C. The hydrophilic polymers, such as poly(ethylene glycol) (PEG) and poly(ethyleneimine) (PEI), were postgrafted onto the poly(MMA-co-MOIB)-grafted silica by the reaction of functional groups of PEG and PEI with pendant isocyanate groups of poly(MMA-co-MOI)-grafted silica to give branched polymer-grafted silica. The percentage of grafting increased with increasing molecular weight of PEG, but the number of postgrafted chain decreased, because of steric hindrance. The hydrophobic polymers, such as poly(dimethylsiloxane) were also postgrafted onto poly(MMA-co-MOI)-grafted silica. It was found that the grafting of hydrophobic polymer and the postgrafting of hydrophilic polymer branches readily controls the wettability of silica surface to water.  相似文献   

9.
A new technique is reported for the surface grafting of polyvinylpyrrolidone (PVP) to hydroxylated solid surfaces. Free radical graft polymerization of vinylpyrrolidone onto vinylsilane–modified impermeable silica particles was carried out in an aqueous slurry reactor. The graft yield and the monomer conversion were determined by thermogravimetric analysis and UV spectroscopy, respectively. The graft yield was shown to increase by increasing the initial monomer concentration. A comparison of the graft polymerization reaction with the adsorption of polyvinylpyrrolidone onto untreated, vinylsilane-modified, and PVP-grafted silica was performed.  相似文献   

10.
The free‐radical graft polymerization of vinyl acetate onto nonporous silica particles was studied experimentally. The grafting procedure consisted of surface activation with vinyltrimethoxysilane, followed by free‐radical graft polymerization of vinyl acetate in ethyl acetate with 2,2′‐azobis(2,4‐dimethylpentanenitrile) initiator. Initial monomer concentration was varied from 10 to 40% by volume and the reaction was spanned from 50 to 70°C. The resulting grafted polymer, which was stable over a wide range of pH levels, consisted of polymer chains that are terminally and covalently bonded to the silica substrate. The experimental polymerization rate order, with respect to monomer concentration, ranged from 1.61 to 2.00, consistent with the kinetic order for the high polymerization regime. The corresponding rate order for polymer grafting varied from 1.24 to 1.43. The polymer graft yield increased with both initial monomer concentration and reaction temperature, and the polymer‐grafted surface became more hydrophobic with increasing polymer graft yield. The present study suggests that a denser grafted polymer phase of shorter chains was created upon increasing temperature. On the other hand, both polymer chain length and polymer graft density increased with initial monomer concentration. Atomic force microscopy–determined topology of the polymer‐grafted surface revealed a distribution of surface clusters and surface elevations consistent with the expected broad molecular‐weight distribution for free‐radical polymerization. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 300–310, 2003  相似文献   

11.
A method is reported for the surface grafting of polyvinyl acetate (PVAc) onto modified, nonporous silica. The silica surface was modified by silylation with vinyl(triethoxy) silane followed by graft polymerization of vinyl acetate. The graft yield was measured by thermogravimetric analysis and the monomer conversion was monitored by UV spectral analysis. The rate of the graft polymerization and the graft yield were proportional to the initial monomer concentration. Vinyl acetate conversion followed first-order kinetics and displayed a trend of increasing initial rate with increasing monomer concentration.  相似文献   

12.
To prepare polymer-grafted nano-sized silica with hydrophilic core and hydrophobic shell and with higher percentage of grafting, the postgraft polymerization of vinyl polymers onto hyperbranched poly(amidoamine)-grafted (PAMAM-grafted) nano-sized silica initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica was investigated. The introduction of trichloroacetyl groups onto PAMAM-grafted silica surfaces was readily achieved by the reaction of trichloroacetyl isocyanate with terminal amino groups of PAMAM-grafted silica. It was found that the polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) was successfully initiated by the system consisting of Mo(CO)6 and terminal trichloroacetyl groups of PAMAM-grafted silica. In the polymerization, the corresponding vinyl polymers were effectively postgrafted onto PAMAM-grafted silica, based on the propagation of polymer from surface radicals formed by the reaction of terminal trichloroacetyl groups with Mo(CO)6: the percentage of PMMA postgrafting onto PAMAM-grafted silica reached to 400% after 30 min, but the formation of gel was observed after 35 min. The formation of gel tends to decrease by use of hyperbranched PAMAM-grafted silica with higher percentage of grafting. The vinyl polymer-postgrafted nano-sized silica gave a stable colloidal dispersion in various organic solvents.  相似文献   

13.
《Reactive Polymers》1994,22(1):47-53
The radical graft polymerization of vinyl monomers onto the surface of aramid powder, i.e., poly(p-phenylene terephthalamide) powder, initiated by azo groups introduced onto the surface was investigated. The introduction of azo groups onto the aramid surface was achieved by the reaction of surface acyl chloride groups, which were introduced by the treatment of aramid powder with adipoyl dichloride, with 2,2′-azobis[2-(2-imidazolyn-2-yl)propane] in the presence of pyridine: the amount of azo groups thus introduced onto the surface was determined to be 0.57 mmol/g by elemental analysis. It was found that the polymerizations of methyl methacrylate (MMA) and styrene were successfully initiated by the azo groups on the surface and that the corresponding polymers were grafted onto the surface. The percentage of surface grafting of polystyrene and poly(methyl methacrylate) (PMMA) increased up to 37.6 and 26.5%, respectively. Thermogravimetric analysis of polymer surface-grafted aramid powder confirmed that the grafting of polymers is limited on the surface. The polymerization rate was found to bear a first-order dependence on the concentration of aramid powder having azo groups. This suggests that in graft polymerization, unimolecular termination preferentially proceeds.  相似文献   

14.
Summary The ring-opening polymerization of 2-oxazolines (OXZs) was found to be initiated by chloromethyl groups introduced onto carbon black surface. The introduction of chloromethyl groups onto the surface was achieved by the reaction of carbon black with 3,3-bischloromethylbenzoyl peroxide in carbon tetrachloride. During the polymerization, poly-OXZs were grafted from carbon black based on the propagation of the polymers from the surface: percentage of grafting increased with an increase of conversion and reached 40–60%. The polymerization was accelerated by the addition of potassium iodide. Poly-OXZ-grafted carbon black produced stable colloidal dispersions in both hydrophobic and hydrophilic solvents.  相似文献   

15.
Chun-Hua Liu  Cai-Yuan Pan 《Polymer》2007,48(13):3679-3685
Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to graft polystyrene (PS) onto silica nanoparticles. A novel route was used to prepare the RAFT agent, 2-butyric acid dithiobenzoate (BDB) by substitution of dithiobenzoate magnesium bromide with sodium 2-bromobutyrate under alkali condition in aqueous solution. Epoxy groups were covalently attached to silica nanoparticles by condensation reaction of 3-glycidyloxypropyltrimethoxysilane (GPS) with the hydroxyl on the silica particle surface. RAFT agent functionalized nanoparticles were produced by ring-open reaction of the epoxy group with the carboxyl group of BDB. Then, PS chains with controlled molecular weights and narrow polydispersities (less than 1.1) were grown from the RAFT agent anchored nanoparticle surface. FT-IR, transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) results showed that PS chains grew from silica particles by surface RAFT polymerization.  相似文献   

16.
The grafting of vinyl polymers onto the surface of polymethylsiloxane-coated titanium dioxide modified with alcoholic hydroxyl groups (Ti/Si–R–OH) were investigated. The introduction of azo and trichloroacetyl groups onto the surface of Ti/Si–R–OH was achieved by the reaction of the surface alcoholic hydroxyl groups with 4,4′-azobis(4-cyanopentanoic acid) and trichloroacetyl isocyanate, respectively. The radical polymerizations of vinyl monomers were successfully initiated by the azo groups introduced onto the surface and by the system consisting of Mo(CO)6 and Ti/Si–R–COCCl3. During the polymerization, the corresponding polymers were effectively grafted onto the titanium dioxide surface through propagation from surface radicals formed by the decomposition of azo groups and by the reaction of Mo(CO)6 with trichloroacetyl groups on the surface. The percentage of grafting and grafting efficiency in the graft polymerization initiated by the system consisting of Ti/Si–R–COCCl3 and Mo(CO)6 were much larger than those initiated by azo groups. The polymer-grafted titanium dioxide was found to produce a stable colloidal dispersion in good solvents for the grafted polymer. The dispersibility of poly(N,N-diethylacrylamide)-grafted titanium dioxide in water was controlled by temperature. In addition, the wettability of the surface of titanium dioxide to water was readily controlled by grafting of hydrophilic or hydrophobic polymers.  相似文献   

17.
本文对纳米无机氧化物粒子表面的接枝改性作了论述,重点介绍了纳米粒子表面官能团引发的接枝聚合(自由基聚合、阴离子集合、阳离子聚合),并对各种接枝方法以及其发展情况进行了评价。同时对树状接枝进行了简要的介绍。  相似文献   

18.
The graft polymerization of vinyl monomers onto vapor grown carbon fibers (VGCF) initiated by the system consisting of molybdenum hexacarbonyl (Mo(CO)6) and trichloroacetyl (COCCl3) groups introduced onto the surface was investigated. The introduction of trichloroacetyl groups onto VGCF surface was successfully achieved by the reaction of carboxyl groups on VGCF surface with trichloroacetyl isocyanate. It was found that the radical graft polymerization of vinyl monomers, such as methyl methacrylate (MMA), styrene, and glycidyl methacrylate (GMA) is successfully initiated by the system consisting of Mo(CO)6 and COCCl3 groups introduced onto the surfaces. In the polymerization, the corresponding vinyl polymers were effectively grafted onto the VGCF surface, based on the propagation of polymer from surface radicals formed by the interaction of trichloroacetyl groups and Mo(CO)6: the percentage of PMMA grafting reached 40%. Polymer-grafted VGCF gave a stable colloidal dispersion in good solvents for grafted polymer. The electric resistance of composite prepared from the polymer-grafted VGCF suddenly increased in organic solvent vapor over 103 times, and returned to initial resistance when it was transferred into dry air. These results indicate that such composites can be used as novel gas sensors.  相似文献   

19.
In this study, grafting of hyperbranched polyamidoamine (PAMAM) polymer onto ultrafine silica followed by functionalization via the introduction of phosphonic acid groups into the branch ends was performed. First, an initiating site was incorporated into the silica surface by reacting the silica silanol group with 3‐aminopropyltriethoxysilane, producing amino‐functionalized silica. The free amine group content was altered by varying the ratio of methanol to water in the hydrolysis step of the silanization reaction. Grafting of PAMAM was attained by three rounds of sequential Michael addition of silica amino groups to methyl acrylate and amidation of the resulting terminal methyl ester groups with ethylenediamine. Completion of the grafting reaction in each step was clearly confirmed using FTIR analysis. Excessive ethylenediamine and unattached hyperbranched PAMAM present in the reaction product were removed by dialysis with a molecular weight cutoff of 6000–7000 Daltons. However, the amino group content determined in each step was found to be significantly lower than theoretically expected, perhaps indicative of side reactions and, in later stages, steric hindrance. The resultant hyperbranched PAMAM‐grafted onto silica was functionalized by phosphorylation of the terminal amino groups by a Mannich type reaction, producing the phosphorylated hyperbranched PAMAM‐grafted silica. Then its application on cotton fabric to produce fire‐retardant cellulose was tentatively investigated. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
To improve dispersibility of silica nanoparticle in organic solvents, the grafting of poly(L ‐lactide) (PLLA) onto silica nanoparticle surface by ring‐opening polymerization of L‐lactide (LA) was investigated in the presence of an amidine base catalyst. The ring‐opening polymerization of LA successfully initiated in the presence of silica having amino groups (silica‐NH2) and an amidine base catalyst to give PLLA‐grafted silica, but not in the presence of untreated silica (silica‐OH). In the absence of the amidine base catalyst no ring‐opening polymerization of LA even in the presence of silica‐NH2 and no grafting of PLLA onto silica were observed. It became apparent that the amidine base catalyst acts as an effective catalyst for the ring‐opening graft polymerization of LA from the surface of silica‐NH2. In addition, it was found that the percentage of PLLA grafting onto silica could be controlled according to the reaction conditions. The average particle size of PLLA‐grafted silica was smaller than that of silica‐NH2. Therefore, it was considered that the aggregation structure of silica nanoparticles was considerably destroyed by grafting of PLLA onto the surface. The PLLA‐grafted silica gave a stable dispersion in polar solvents, which are good solvents for PLLA. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号