首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The N-methyl-D-aspartate (NMDA) receptor has been implicated in activity-dependent synapse stabilization, but its role as a detector of correlated activity during development is debated. In the amphibian retinotectal system, synaptic sorting and stabilization occur throughout larval life, and map refinement is dependent on continuous NMDA receptor function. Moreover, tadpole tecta chronically treated with NMDA selectively fail to maintain retinal synapses wherever their activity correlations are lowest. To determine whether this synapse elimination is associated with a specific down-regulation of NMDA receptor function, whole cell voltage-clamp recordings were made from single neurons in tectal slices. After chronic NMDA treatment, decreases in the magnitude of NMDA currents were detected in glutamatergic synaptic currents, in agonist-evoked currents, and in single-channel currents activated by NMDA. The results suggest that the efficacy of NMDA receptors on tectal neurons determines the amount of correlation required to stabilize sets of tectal inputs during formation of the retinotectal projection.  相似文献   

2.
Before action potential-evoked Ca2+ transients, basal presynaptic Ca2+ concentration may profoundly affect the amplitude of subsequent neurotransmitter release. Reticulospinal axons of the lamprey spinal cord receive glutamatergic synaptic input. We have investigated the effect of this input on presynaptic Ca2+ concentrations and evoked release of neurotransmitter. Paired recordings were made between reticulospinal axons and the neurons that make axo-axonic synapses onto those axons. Both excitatory and inhibitory paired-cell responses were recorded in the axons. Excitatory synaptic inputs were blocked by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10 microM) and by the NMDA receptor antagonist 2-amino-5-phosphonopentanoate (AP-5; 50 microM). Application of NMDA evoked an increase in presynaptic Ca2+ in reticulospinal axons. Extracellular stimulation evoked Ca2+ transients in axons when applied either directly over the axon or lateral to the axons. Transients evoked by the two types of stimulation differed in magnitude and sensitivity to AP-5. Simultaneous microelectrode recordings from the axons during Ca2+ imaging revealed that stimulation of synaptic inputs directed to the axons evoked Ca2+ entry. By the use of paired-cell recordings between reticulospinal axons and their postsynaptic targets, NMDA receptor activation was shown to enhance evoked release of transmitter from the axons that received axoaxonic inputs. When the synaptic input to the axon was stimulated before eliciting an action potential in the axon, transmitter release from the axon was enhanced. We conclude that NMDA receptor-mediated input to reticulospinal axons increases basal Ca2+ within the axons and that this Ca2+ is sufficient to enhance release from the axons.  相似文献   

3.
The mechanism underlying dopamine D1 receptor-mediated attenuation of glutamatergic synaptic input to nucleus accumbens (NAcc) neurons was investigated in slices of rat forebrain, using whole-cell patch-clamp recording. The depression by dopamine of EPSCs evoked by single-shock cortical stimulation was stimulus-dependent. Synaptic activation of NMDA-type glutamate receptors was critical for this effect, because dopamine-induced EPSC depressions were blocked by the competitive NMDA receptor antagonist D/L-2-amino-5-phosphonopentanoate (AP5). Application of NMDA also depressed the EPSC, and both this effect and the dopamine depressions were blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), implicating adenosine release in the EPSC depression. A1 receptor agonists also depressed EPSCs by a presynaptic action, causing increased paired-pulse facilitation, but this was insensitive to AP5. Activation of D1 receptors enhanced both postsynaptic inward currents evoked by NMDA application and the isolated NMDA receptor-mediated component of synaptic transmission. The biochemical processes underlying the dopamine-induced EPSC depression did not involve either protein kinase A or the production of cAMP and its metabolites, because this effect was resistant to the protein kinase inhibitors H89 and H7 and the cAMP-specific phosphodiesterase inhibitor rolipram. We conclude that activation of postsynaptic D1 receptors enhances the synaptic activation of NMDA receptors in nucleus accumbens neurons, thereby promoting a transsynaptic feedback inhibition of glutamatergic synaptic transmission via release of adenosine. Unusually for D1 receptors, this phenomenon occurs independently of adenylyl cyclase stimulation. This process may contribute to the locomotor stimulant action of dopaminergic agents in the NAcc.  相似文献   

4.
Optic nerve (ON) stimulation caused a postsynaptic field potential in the suprachiasmatic nucleus (SCN) of rat hypothalamic slices. The postsynaptic field potential was suppressed by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist, in a concentration-dependent manner, but not affected by D-amino-5-phosphonovaleric acid (APV), a competitive NMDA receptor antagonist. Tetanic stimulation to the ON induced long-term potentiation (LTP) in the SCN. Application of APV at 50 microM inhibited the induction of LTP by tetanic stimulation but CNQX at lower dose (5 microM) didn't inhibit it. These results suggest that NMDA receptors are indispensable for the induction of LTP after tetanic stimulation.  相似文献   

5.
Neural tuning for interaural time difference (ITD) in the optic tectum of the owl is calibrated by experience-dependent plasticity occurring in the external nucleus of the inferior colliculus (ICX). When juvenile owls are subjected to a sustained lateral displacement of the visual field by wearing prismatic spectacles, the ITD tuning of ICX neurons becomes systematically altered; ICX neurons acquire novel auditory responses, termed "learned responses," to ITD values outside their normal, pre-existing tuning range. In this study, we compared the glutamatergic pharmacology of learned responses with that of normal responses expressed by the same ICX neurons. Measurements were made in the ICX using iontophoretic application of glutamate receptor antagonists. We found that in early stages of ITD tuning adjustment, soon after learned responses had been induced by experience-dependent processes, the NMDA receptor antagonist D, L-2-amino-5-phosphonopentanoic acid (AP-5) preferentially blocked the expression of learned responses of many ICX neurons compared with that of normal responses of the same neurons. In contrast, the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocked learned and normal responses equally. After long periods of prism experience, preferential blockade of learned responses by AP-5 was no longer observed. These results indicate that NMDA receptors play a preferential role in the expression of learned responses soon after these responses have been induced by experience-dependent processes, whereas later in development or with additional prism experience (we cannot distinguish which), the differential NMDA receptor-mediated component of these responses disappears. This pharmacological progression resembles the changes that occur during maturation of glutamatergic synaptic currents during early development.  相似文献   

6.
This study was undertaken to clarify the location of glutamatergic synaptic transmission in the descending pathway of the micturition reflex in decerebrate cats. Contractions of the urinary bladder evoked by stimulating the pontine micturition center were completely inhibited by the broad-spectrum excitatory amino acid antagonist, kynurenic acid (KYN) and the selective N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801, that were applied intrathecally to the sacral cord, while such contractions were not attenuated by the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). An iontophoretic application of KYN remarkably inhibited discharges of the sacral parasympathetic preganglionic neurons innervating the urinary bladder (bladder motoneurons) elicited by pontine stimulation. Our results suggest that glutamatergic synaptic transmission is located at the level of the sacral cord in the descending limb of the micturition reflex and is mediated via NMDA receptor on the bladder motoneurons.  相似文献   

7.
The parafascicular nucleus projection to the subthalamic neurones has an excitatory synaptic effect. We have examined the possible glutamatergic mediation of this pathway. The initial excitatory response elicited by electrical stimulation of the parafascicular neurones was inhibited by a microinjection of excitatory amino acid receptor antagonists into the subthalamic nucleus. The antagonists were the broad spectrum kynurenic acid, the NMDA selective antagonist d-AP-5 and the AMPA antagonist CNQX. Their effects were dose-dependent and reversible. The results suggest that the excitatory effect of the parafascicular neurones is mediated by AMPA and NMDA receptors.  相似文献   

8.
We have examined the membrane localization of an AMPA receptor subunit (GluR1) and an NMDA receptor subunit (NR1) endogenously expressed in primary cultures of rat hippocampal neurons. In unstimulated cultures, both GluR1 and NR1 subunits were concentrated in SV2-positive synaptic clusters associated with dendritic shafts and spines. Within 5 min after the addition of 100 microM glutamate to the culture medium, a rapid and selective redistribution of GluR1 subunits away from a subset of synaptic sites was observed. This redistribution of GluR1 subunits was also induced by AMPA, did not require NMDA receptor activation, did not result from ligand-induced neurotoxicity, and was reversible after the removal of agonist. The activation-induced redistribution of GluR1 subunits was associated with a pronounced (approximately 50%) decrease in the frequency of miniature EPSCs, consistent with a role of GluR1 subunit redistribution in mediating rapid regulation of synaptic efficacy. We conclude that ionotropic glutamate receptors are regulated in native neurons by rapid, subtype-specific membrane trafficking, which may modulate synaptic transmission in response to physiological or pathophysiological activation.  相似文献   

9.
A combination of experimental and modeling approaches was used to study cellular-molecular mechanisms underlying the expression of short-term potentiation (STP) and long-term potentiation (LTP) of glutamatergic synaptic transmission in the hippocampal slice. Electrophysiological recordings from dentate granule cells revealed that high-frequency stimulation of perforant path afferents induced a robust STP and LTP of both (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor-mediated synaptic responses. However, the decay time constant for STP of the AMPA receptor-mediated excitatory postsynaptic potential was approximately 6 min, whereas the decay time constant for STP of the NMDA receptor-mediated excitatory postsynaptic potential was only 1 min. In addition, focal application of agonists during the expression of STP revealed that the magnitude of conductance change elicited by NMDA application was significantly enhanced, whereas the magnitude of conductance change elicited by application of AMPA remained constant. These findings are most consistent with a postsynaptic mechanism of STP and LTP. Different putative mechanisms were evaluated formally using a computational model that included diffusion of glutamate within the synaptic cleft, different kinetic properties of AMPA and NMDA receptor/channels, and geometric relations between presynaptic release sites and postsynaptic receptor/channels. Simulation results revealed that the only hypothesis consistent with experimental data is that STP and LTP reflect a relocation of AMPA receptor/channels in the postsynaptic membrane such that they become more closely "aligned" with presynaptic release sites. The same mechanism cannot account for STP or LTP of NMDA receptor-mediated responses; instead, potentiation of the NMDA receptor subtype is most consistent with an increase in receptor sensitivity or number.  相似文献   

10.
The role of glutamate receptors in regulating programmed neuronal death and deafferentation-induced neuronal death in the brainstem auditory nuclei was studied by in ovo drug administration to chick embryos. The nucleus laminaris (NL) undergoes programmed developmental cell death of 19% between embryonic day 9 (E9) and E17. The AMPA/kainate receptor antagonist CNQX, when administered at doses of 200-300 microg/d from E8 to E15, prevented programmed neuronal death in NL through at least posthatching day 8, without producing anatomical or behavioral abnormalities. 3-((RS)-2-Carboxypiperazin-4-yl)-propyl-1-phos-phonic acid, an antagonist of NMDA receptors, had no effect on normal cell death in the NL. CNQX, given from E8 to E15 or only from E8 to E10, also blocked the 33% neuronal loss in the nucleus magnocellularis (NM) that follows surgical destruction of the otocyst on E3, a procedure that deafferents NM neurons by preventing formation of the cochlear nerve. Treatment either with CNQX or the more highly selective NBQX from E8 to E10, before the onset of synaptic transmission in NM and NL, was also effective in preventing normal neuronal death in NL. Analysis of the effects of CNQX or NBQX on spontaneous embryonic motility at E10 showed that the doses effective in preventing neuronal death suppressed motility for <8 hr. We conclude that periodic blockade of AMPA/kainate receptors can protect CNS neurons against subsequent programmed cell death or deafferentation-induced death.  相似文献   

11.
In the developing visual cortex activity-dependent refinement of synaptic connectivity is thought to involve synaptic plasticity processes analogous to long-term potentiation (LTP). The recently described conversion of so-called silent synapses to functional ones might underlie some forms of LTP. Using whole-cell recording and minimal stimulation procedures in immature pyramidal neurons, we demonstrate here the existence of functionally silent synapses, i.e., glutamatergic synapses that show only NMDA receptor-mediated transmission, in the neonatal rat visual cortex. The incidence of silent synapses strongly decreased during early postnatal development. After pairing presynaptic stimulation with postsynaptic depolarization, silent synapses were converted to functional ones in an LTP-like manner, as indicated by the long-lasting induction of AMPA receptor-mediated synaptic transmission. This conversion was dependent on the activation of NMDA receptors during the pairing protocol. The selective activation of NMDA receptors at silent synapses could be explained presynaptically by assuming a lower glutamate concentration compared with functional ones. However, we found no differences in glutamate concentration-dependent properties of NMDA receptor-mediated PSCs, suggesting that synaptic glutamate concentration is similar in silent and functional synapses. Our results thus support a postsynaptic mechanism underlying silent synapses, i.e., that they do not contain functional AMPA receptors. Synaptic plasticity at silent synapses might be expressed postsynaptically by modification of nonfunctional AMPA receptors or rapid membrane insertion of AMPA receptors. This conversion of silent synapses to functional ones might play a major role in activity-dependent synaptic refinement during development of the visual cortex.  相似文献   

12.
In the visual pathway of frogs it is possible to apply low levels of NMDA chronically to the optic tectum and study the mechanisms underlying the stabilization of synapses developing within the CNS. Earlier studies (Cline and Constantine-Paton, 1990) found that chronic NMDA treatment of tecta innervated by two retinas results in a reduction of branching within the terminal arbors of retinal ganglion cells (RGCs). We now report that this same chronic NMDA treatment produces fine-structural changes in synaptic morphology as well as local synaptic rearrangements within the retinotectal neuropil. Chronic NMDA treatment of doubly innervated tecta was associated with a thickening or darkening of both pre- and postsynaptic densities. These changes in synapse morphology were restricted to the superficial neuropil of tecta in regions where reductions in branches of RGC axonal arbors were observed at the light microscopic level. The fine-structural effects were absent from similarly treated tecta innervated by only one eye, where RGC axonal arbor pruning was not observed. Stereological analyses indicated that the incidence of two or more presynaptic profiles converging on the same postsynaptic process was significantly increased in the NMDA-treated, doubly innervated tecta. This observed increase in synaptic clustering was not associated with a larger synaptic active zone, or with an increase in the number of synapses per unit volume. These data are discussed in the context of the hypothesis that chronic NMDA treatment raises the threshold for synapse stabilization in tectal neurons, causing the selective loss of poorly correlated synapses of both retinal and non-retinal origin from tectal neuropil that is innervated by two retinas: increased pre- and postsynaptic thickening could reflect greater efficiency in the remaining synaptic contacts and their closer spatial proximity on the same postsynaptic process is consistent with greater cooperativity and less competition.  相似文献   

13.
The in-vitro pharmacological properties of (2,3-dioxo-7-(1H-imidazol-1-yl)-6-nitro-1,2,3,4-tetrahydro-1-quinoxal inyl)-acetic acid monohydrate, YM872, a novel and highly water-soluble alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)-receptor antagonist were investigated. YM872 is highly water soluble (83 mg mL(-1) in Britton-Robinson buffer) compared with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX), 6-(1H-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). YM872 potently inhibits [3H]AMPA binding with a Ki (apparent equilibrium dissociation constant) value of 0.096 +/- 0.0024 microM. However, YM872 had very low affinity for other ionotropic glutamate receptors, as measured by competition with [3H]kainate (high-affinity kainate binding site, concentration resulting in half the maximum inhibition (IC50) = 4.6 +/- 0.14 microM), [3H]glutamate (N-methyl-D-aspartate (NMDA) receptor glutamate binding site, IC50 > 100 microM) and [3H]glycine (NMDA receptor glycine-binding site, IC50 > 100 microM). YM872 competitively antagonized kainate-induced currents in Xenopus laevis oocytes which express rat AMPA receptors, with a pA2 value of 6.97 +/- 0.01. In rat hippocampal primary cultures, YM872 blocked a 20-microM AMPA-induced increase of intracellular Ca2+ concentration with an IC50 value of 0.82 +/- 0.031 microM, and blocked 300-microM kainate-induced neurotoxicity with an IC50 value of 1.02 microM. These results show that YM872 is a potent and highly water-soluble AMPA antagonist with great potential for treatment of neurodegenerative disorders such as stroke.  相似文献   

14.
The modulatory action of substance P on synaptic transmission of CA1 neurons was studied using intra- or extracellular recording from the mouse hippocampal slice preparation. Bath-applied substance P (2-4 microM) or the selective NK1 receptor agonist substance P methylester (SPME, 10 nM-5 microM) depressed field potentials (recorded from stratum pyramidale) evoked by focal stimulation of Schaffer collaterals. This effect was apparently mediated via NK1 receptors since it was completely blocked by the selective NK1 antagonist SR 140333. The field potential depression by SPME was significantly reduced in the presence of bicuculline. Intracellular recording from CA1 pyramidal neurons showed that evoked excitatory postsynaptic potentials (EPSPs) and evoked inhibitory postsynaptic potentials (IPSPs) were similarly depressed by SPME, which at the same time increased the frequency of spontaneous GABAergic events and reduced that of spontaneous glutamatergic events. The effects of SPME on spontaneous and evoked IPSPs were prevented by the ionotropic glutamate receptor blocker kynurenic acid. In tetrodotoxin (TTX) solution, no change in either the frequency of spontaneous GABAergic and glutamatergic events or in the amplitude of responses of pyramidal neurons to 4 microM alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) or 10 microM N-methyl-D-aspartate (NMDA) was observed. On the same cells, SPME produced minimal changes in passive membrane properties unable to account for the main effects on synaptic transmission. The present data indicate that SPME exerted its action on CA1 pyramidal neurons via a complex network mechanism, which is hypothesized to involve facilitation of a subset of GABAergic neurons with widely distributed connections to excitatory and inhibitory cells in the CA1 area.  相似文献   

15.
Electrophysiological and pharmacological methods were used to examine the role of glutamate in mediating the excitatory and inhibitory responses produced by the N2v rasp phase neurons on postsynaptic cells of the Lymnaea feeding network. The N2v --> B3 motor neuron excitatory synaptic response could be mimicked by focal or bath application of -glutamate at concentrations of >/=10(-3) M. Quisqualate and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) were potent agonists for the B3 excitatory glutamate receptor (10(-3) M), whereas kainate only produced very weak responses at the same concentration. This suggested that non-N-methyl--aspartate (NMDA), AMPA/quisqualate receptors were present on the B3 cell. The specific non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M) blocked 85% of the excitatory effects on the B3 cell produced by focal application of glutamate (10(-3) M), confirming the presence of non-NMDA receptors. CNQX also blocked the major part of the excitatory postsynaptic potentials on the B3 cell produced by spontaneous or current-evoked bursts of spikes in the N2v cell. As with focal application of glutamate, a small delayed component remained that was CNQX insensitive. This provided direct evidence that glutamate acting via receptors of the non-NMDA, AMPA/quisqualate type were responsible for mediating the main N2v --> B3 cell excitatory response. NMDA at 10(-2) M also excited the B3 cell, but the effects were much more variable in size and absent in one-third of the 25 B3 cells tested. NMDA effects on B3 cells were not enhanced by bath application of glycine at 10(-4) M or reduction of Mg2+ concentration in the saline to zero, suggesting the absence of typical NMDA receptors. The variability of the B3 cell responses to NMDA suggested these receptors were unlikely to be the main receptor type involved with N2v --> B3 excitation. Quisqualate and AMPA at 10(-3) M also mimicked N2v inhibitory effects on the B7 and B8 feeding motor neurons and the modulatory slow oscillator (SO) interneuron, providing further evidence for the role of AMPA/quisqualate receptors. Similar effects were seen with glutamate at the same concentration. However, CNQX could not block either glutamate or N2v inhibitory postsynaptic responses on the B7, B8, or SO cells, suggesting a different glutamate receptor subtype for inhibitory responses compared with those responsible for N2v --> B3 excitation. We conclude that glutamate is a strong candidate transmitter for the N2v cells and that AMPA/quisquate receptors of different subtypes are likely to be responsible for the excitatory and inhibitory postsynaptic responses.  相似文献   

16.
Two main subclasses of ionotropic receptors for excitatory amino acids (EAAs), N-methyl-D-aspartate (NMDA) receptors and non-NMDA receptors, are involved in neurotransmission in the cortex of mammals. To examine whether EAAs are transmitters at the cortical taste area (CTA) in rats and to elucidate which types of the two ionotropic receptors operate at these synapses, we studied the effects of microiontophoretic administration of EAA antagonists on the responses of 64 taste cortical neurons to four basic taste stimuli in urethane-anesthetized rats. Both D-2-amino-5-phosphonovalerate (APV), a selective antagonist for NMDA receptors, and 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX), a selective antagonist for non-NMDA receptors, suppressed most of the taste responses. The percentage of neurons suppressed by APV (70.3%) was almost the same as that suppressed by CNQX (64.1%). These suppressive effects were independent of the effects of background discharges during the prestimulus, water-rinsing period. The percentage of neurons suppressed by the antagonists did not differ between any pairs of taste stimuli. The number of neurons possessing both receptors was larger in the granular insular area (area GI), one of the two CTAs, than in the dysgranular insular area (area DI). In addition, taste responses were suppressed by CNQX or by both APV and CNQX in area GI in a significantly larger number of layer V neurons than in area DI. The present results indicate that normal excitatory transmission of taste afferents in the CTA in rats was mediated by both NMDA and non-NMDA receptors. The finding that a large fraction of neurons in the CTA in rats mediated taste information through NMDA receptors in normal transmission might be related to the higher potency of the plasticity observed in the CTA.  相似文献   

17.
Previous work from this laboratory has demonstrated that monosynaptic inputs from the brachium of the inferior colliculus (BIC) to the medial subdivision of the medial geniculate nucleus (mMG) strengthen as a result of associative conditioning with an acoustic conditioned stimulus (i.e., fear conditioning). One model that has been proposed to underlie certain types of neuronal plasticity involves the recruitment of N-methyl-D-aspartic acid (NMDA)-type glutamate receptors. The purpose of the present study was to examine the relative contributions of glutamatergic NMDA and non-NMDA receptors to synaptic transmission within this pathway. Individual contributions of the specific receptor types were assessed through the use of 2-amino-5-phosphonovaleric acid (AP5), a selective NMDA receptor antagonist, and 6-cyano-5-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA receptor antagonist. Bipolar stimulating electrodes were stereotaxically implanted in BIC and recording electrodes (attached to dual 32-gauge cannulae for delivery of drug) were positioned in mMG of New Zealand albino rabbits. Single pulses (150 micros, 100-350 microA) delivered to BIC resulted in short-latency (<4 ms) responses in mMG. BIC-evoked single-unit activity was recorded from mMG before, during, and at several intervals after injection of AP5, CNQX, and/or artificial cerebrospinal fluid (ACSF). Injection of either AP5 or CNQX, but not ACSF, significantly attenuated the short-latency BIC-evoked responses in the vast majority of cells tested. These findings suggest that the monosynaptic pathway from BIC to mMG is glutamatergic and that this pathway frequently employs NMDA-type receptors during electrically stimulated synaptic transmission. Due to the NMDA receptors' proposed role in plasticity (e.g., long-term potentiation), these results may have implications for understanding the mechanisms of synaptic plasticity observed at this synapse during associative learning.  相似文献   

18.
The effects of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1-300 microM) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100-300 microM) and AMPA (30-300 microM), however, subsequently inhibited acetylcholine release. NMDA (100 microM)-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1-10 microM), whereas the 10 microM AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-30 microM). NMDA (100 microM)-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor L-nitroarginine (1-100 microM). Tetrodotoxin (0.5 microM) prevented the facilitatory effect of 3 microM NMDA and AMPA, but left unchanged that of 30 microM NMDA and 100 microM AMPA. Acetylcholine release from synaptosomes was stimulated by KCl (7.5-100 mM) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 mM KCl effect at 1 microM and 0.01 microM, but were ineffective at 100 microM and 10 microM, respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 microM NMDA and 0.01 microM AMPA were antagonized by CPP (0.0001-1 microM) or dizocilpine (0.0001-10 microM) and by CNQX (0.001-1 microM), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and postsynaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

19.
1. The effects of glutamate receptor agonists and antagonists on bipolar cells and ganglion cells were studied with the use of intracellular and extracellular recording in the superfused, isolated, flat-mounted tiger salamander retina. The goal of the experiments was to correlate glutamate receptor subtypes with their localization at specific synaptic sites in the tiger salamander retina. The drugs tested were the kainate/alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), the N-methyl-D-aspartate (NMDA) receptor antagonist 3-(C+/-)-2-carboxy-piperazin-4-yl)-propyl-1-phosphonic acid (CPP) and L-2-amino-4-phosphonobutyrate (L-AP4). 2. The light responses of hyperpolarizing bipolar cells were suppressed by 20 microM CNQX, whereas L-AP4 had no effect on their light responses. In contrast, 20 microM CNQX had no effect on depolarizing bipolar cells, whereas L-AP4 abolished the light responses of these cells. 3. The light offset responses of OFF and ON-OFF ganglion cells were completely blocked by concentrations of CNQX as low as 5 microM. The light onset responses of ON-OFF ganglion cells were blocked when the concentration of CNQX was raised to 20 microM. In addition, 30 microM CPP partially blocked the light onset responses of ON-OFF ganglion cells but had a lesser effect on the light offset responses. 4. Twenty micromolars of CNQX blocked a transient component, and 20 microM CPP blocked a sustained component of the light response of sustained-ON ganglion cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
During the first 2 days of postnatal development, CA1 hippocampal glutamatergic synaptic transmission is based almost exclusively on NMDA receptors and is non-functional at resting potential. Within the following days an increasing number of functionally mature synapses, containing both NMDA and AMPA receptors, were observed. We found that the maturation of the NMDA receptor-mediated synapses could be induced experimentally with a pairing protocol, a process termed functional synapse induction. Our data provide evidence that a LTP-like mechanism involved in the activity-dependent formation of functional glutamergic synapses in the developing hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号