首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Ground-source heat-pump systems provide a new and clean way of heating buildings in the world. They make use of renewable energy stored in the ground, providing one of the most energy-efficient ways of heating buildings. Consumption costs are lowered through the use of free energy from the environment, and the dependence on fossil fuels simultaneously reduces. The aim of this study is to evaluate the performance of vertical ground-source heat-pump system for climatic condition of Erzurum having cold climate in Turkey. For this purpose, an experimental set-up was constructed. The experimental apparatus consisted of a series GHE (ground heat exchanger), a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement equipments. In this study, the performance of the system was experimentally investigated. The experimental results were obtained from October to May for the months of heating season of 2008–2009. The experimental results indicate that the average heat-pump COP and overall system’s COPS values are approximately 3.0 and 2.6 in the coldest months of heating season. This study also shows that this system could be used for residential heating in the province of Erzurum being a cold climate region of Turkey.  相似文献   

2.
Heat pump systems are recognized to be outstanding heating, cooling and water heating systems. They provide high levels of comfort as well as offering significant reductions in electrical energy use. In addition, they have very low levels of maintenance requirements and are environmentally attractive. The purpose of this study is to evaluate the experimentally performance and energy analysis of vertical ground-source heat pump (GSHP) for winter climatic condition of Erzurum, Turkey. For this aim, an experimental analysis was performed on GSHP system made up in the Energy Laboratory in the campus of Ataturk University. The experimental apparatus consisted of a ground heat exchanger, the depth of which was 53 m, a liquid-to-liquid vapor compression heat pump, water circulating pumps and other measurement and control equipments. Tests were performed under laboratory conditions for space heating, in which experimental results were obtained during January–May within the heating season of 2007. The experimentally obtained results were used to calculate the heat pump coefficient of performance (COP) and the system performance (COPs). The COP and COPs were found to be in the range of 2.43–3.55 and 2.07–3.04, respectively. This study also shows that the system proposed could be used for residential heating in the province of Erzurum which is one of the coldest climate region of Turkey.  相似文献   

3.
In order to investigate the performance of the combined solar–heat pump system with energy storage in encapsulated phase change material (PCM) packings for residential heating in Trabzon, Turkey, an experimental set‐up was constructed. The experimental results were obtained from November to May during the heating season for two heating systems. These systems are a series of heat pump system, and a parallel heat pump system. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load meet by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, the performance of a solar heating system with a heat pump was investigated both experimentally and theoretically. The experimental results were obtained from November to April during the heating season. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load met by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. The average seasonal heating performance values are 4.0 and 3.0 for series and parallel heat pump systems, respectively. A mathematical model was also developed for the analysis of the solar heating system. The model consists of dynamic and heat transfer relations concerning the fundamental components in the system such as solar collector, latent heat thermal energy storage tank, compressor, condenser, evaporator and meteorological data. Some model parameters of the system such as COP, theoretical collector numbers (Nc), collector efficiency, heating capacity, compressor power, and temperatures (T1, T2, T3, TT) in the storage tank were calculated by using the experimental results. It is concluded that the theoretical model agreed well with the experimental results.  相似文献   

5.
This paper introduces a novel solar-assisted heat pump system with phase change energy storage and describes the methodology used to analyze the performance of the proposed system. A mathematical model was established for the key parts of the system including solar evaporator, condenser, phase change energy storage tank, and compressor. In parallel to the modelling work, an experimental set-up of the proposed solar energy storage heat pump system was developed. The experimental data showed that the designed system is capable of meeting cold day heating demands in rural areas of Yanbian city located in Jilin province of China. In day-time operation, the solar heat pump system stores excess energy in the energy storage tank for heating purposes. A desired indoor temperature was achieved; the average coefficient of performance of solar heat pump was identified as 4.5, and the system showed a stable performance throughout the day. In night-time operation, the energy stored in the storage tank was released through a liquid-solid change of phase in the employed phase-change material. In this way, the provision of continuous heat for ten hours was ensured within the building, and the desired indoor air conditions were achieved.  相似文献   

6.
The aim of this study is to evaluate the performance of a centralized open-loop ground-water heat pump (GWHP) system for climate conditioning in Beijing with a cold climate in China. Thus, a long-time test was conducted on a running GWHP system for the heating season from December 2011 to March 2012. The analysis of the testing data indicates that the average heat-pump coefficient of performance (COP) and the COP of the system (COPs) are 4.27 and 2.59. The low value and large fluctuation in the range of COP are found to be caused by the heat transfixion in the aquifer and the bypass in the circulation loop. Therefore, some suggestions are proposed to improve the performance for GWHPs in the cold climate region in China.  相似文献   

7.
The investigation presented in this article is aimed at demonstrating the technical and design feasibility of using ground-source heat pump systems in the mild climate applications for greenhouse heating, where heating requirements are dominant. An experimental comparison between a horizontal ground-source heat pump system and a vertical ground-source heat pump system was shown by focusing on the heating performance. For this purpose, an experimental set-up was constructed. The heating system mainly consists of two different ground heat exchangers, a heat pump, measuring units and a heating space of a model-sized glass greenhouse with 30 m2 located in the greenhouse location.The heating coefficient of performances of the two ground-source heat pumps (COPHP,H–V) and the overall system (COPsys,H–V) were obtained to be in the range of 3.1–3.6 for HGSHP and 3.2–3.8 for VGSHP and 2.7–3.3 for HGSHP and 2.9–3.5 for VGSHP, respectively. Although significant savings are possible with these heating systems, a substantial investment in equipment and facilities may be required. The experimental results were obtained from November to April in heating seasons of 2007–2008. The results showed that the utilization of the ground-source heat pump is suitable for greenhouse heating in this district.  相似文献   

8.
An experimental study is performed to determine the performance of a ground source heat pump (GSHP) system in the heating mode in the city of Erzurum, Turkey. The GSHP system using R‐134a as refrigerant has a single U‐tube ground heat exchanger (GHE) made of polyethylene pipe with a 16 mm inside diameter. The GHE was placed in a vertical borehole with 55 m depth and 203.2 mm diameter. The average coefficients of performance (COP) of the GSHP system and heat pump in heating mode are calculated as 2.09 and 2.57, respectively. The heat extraction rate per meter of the borehole is determined as 33.60 W m?1. Considering the current gas and electric prices in Erzurum city, the equivalent COP of the GSHP system should be 2.92 for the same energy cost comparing with natural gas. The virgin ground in Erzurum basin has high permeability and low thermal conductivity. In order to improve the thermal efficiency of GHE and thus improve COP of a GSHP in the basin, the borehole should be backfilled with sand as low‐cost backfill material and a 1 to 2 m thick surface plug of clay should be inserted. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In order to improve the performance of the solar-assisted and energy-storaged heat pump system, an experimental setup was constructed. In this study, the solar-assisted energy-storaged series heat pump system and other conventional heat pump systems with no energy storage (series and parallel heat pump systems) are experimentally investigated and compared. The experiments were made in July, August, September, October, November, and December in 1990, under the clear-sky conditions for three heat pump systems. The experimentally obtained results are used to calculate the collector efficiency nk, heat pump COP, and system COPsys (coefficient of performance). On the other hand, a dynamic simulation program has been developed for a solar-assisted and energy-storaged heat pump system. The experimental results were compared with the dynamic simulation results.  相似文献   

10.
Air (reverse Brayton) cycle has promising features in cold climate heat pump applications. In this study, an air cycle heat pump water heater (ACHPWH) simulation model considering the off-design performance of components was developed and validated with experimental data from literature. With this model, the performance of ACHPWH was numerically compared with two typical vapor compression heat pump water heaters (VCHPWH) under two different heating schemes, namely instantaneous heating and recirculation heating. For instantaneous heating, the COP of ACHPWH is comparable to that of VCHPWH when supplying high temperature water or operating at low ambient temperature. A significant improvement on annual performance would be achieved as well if higher efficient compressor and expander were applied in ACHPWH system. For recirculation heating, although the COP gap got larger, ACHPWH would save plenty of heating time when operating at low ambient temperature.  相似文献   

11.
为解决太阳电池的发电效率随温度升高而下降以及地源热泵系统供热引起的土壤热失衡问题,以典型居住建筑的光伏/光热-地源热泵(PV/T-GSHP)联合供热系统为研究对象,基于TRNSYS软件,采用土壤温度、地源热泵机组季节能效比、光伏发电效率和太阳能保证率为评价指标,对该联合供热系统进行运行性能分析。研究结果表明:夏热冬冷地区(以长沙为例)太阳能保证率相对较高,PV/T组件面积为满屋顶最大化安装(900 m2)时,第20年末土壤温度相比初始地温仅升高0.8 ℃,热泵机组季节能效比约为5.1,太阳能保证率为97.0%~98.7%;不同气候地区的太阳能保证率与PV/T组件面积和建筑全年累计供热量有关,通过定义单位建筑全年累计供热量PV/T组件面积指标,得到中国不同气候地区的太阳能保证率与该指标的耦合关系,回归方程的决定系数R2为0.983,得出在已知建筑全年累计供热量和太阳保证率设计目标值的条件下所需PV/T组件面积的计算方法。PV/T-GSHP联合供热系统的全年运行能耗显著小于平板太阳能集热器-地源热泵联合系统(最小降幅为沈阳,49.7%),远小于空气源热泵(最小降幅为石家庄,79.8%)和燃气壁挂炉(最小降幅为沈阳,65.1%)。  相似文献   

12.
To increase the driving range of electric vehicles in cold climate, air conditioning heat pump (ACHP) system is supposed to be the most effective solution. Working near 0°C with high humidity, the microchannel outdoor heat exchanger (OHX) in system would experience badly frosting process, like traditional residential heat pump system. It would lead to a significant reduction of system performance without defrosting in time. In this article, experimental investigation has been implemented on the frosting process of ACHP system of electric vehicles which is with a microchannel OHX. The phenomenon of frosting distribution was observed, the frosted part on surface shows uneven with various flows paths. The typical frosting characteristics of an outdoor microchannel heat exchanger were also obtained. In a self-designed three-heat exchanger ACHP system, the inlet and outlet refrigerant temperature of OHX as well as the outlet air temperature of system decrease with increasing frosting coverage rate. The frosting phenomenon was analyzed with variation of ambient temperature and humidity. System influence by frosting was also studied with under different ambient conditions. When OHX begins to frost, the heating capacity reduction of system under different ambient conditions were both increased but the differences in the coefficient of performance (COP) variations under different ambient conditions were small as frosting progressed.  相似文献   

13.
针对目前刺参养殖的水温调控系统能耗大及适用性差等问题,提出基于冰源热泵的高效清洁供热及结合跨季节蓄冷实现全年冷热管理的技术思路,采用冰源热泵系统和跨季节蓄冷型冰源热泵系统对养殖水体温度进行调控,建立模型定量对比分析系统的运行能效及技术经济性.结果表明:(1)冰源热泵系统供热和供冷时的性能系数分别为3.33和3.39,全...  相似文献   

14.
A district cooling and heating (DCH) system can provide both cooling and heating for blocks of buildings in cold climate areas, however, different thermal source schemes of a DCH project always differ in their first cost, operating cost, maintenance cost, regulation performance, control performance, energy-saving and environment protection performance, etc. In order to evaluate various DCH thermal source schemes quantitatively, the paper firstly establishes an evaluation model based on value engineering theory. It then elaborates on how this model is applied in the first seawater source heat pump DCH project in China—Dalian Xinghai Bay project. The calculation results show that even though the scheme of seawater source heat pump system is not economical under commercial electricity price mainly because of its relatively high initial cost, yet it has the highest value coefficient under civil electricity price. This also implies that privileges of policy for renewable energy utilization system are necessary to help promote the energy-saving and environment-friendly scheme of seawater source heat pump system.  相似文献   

15.
针对中原地区典型气象年(辐射极大)的冬季气象条件,通过所建立的跨临界循环热泵系统性能模拟平台,计算并对比分析了太阳能辅助R744跨临界循环及单一R744热泵系统在中原地区的运行特性;讨论了热水出水温度、传热窄点温差改变时系统制热性能系数和最优放热侧压力的变化规律。研究结果表明,在设定工况下,联合应用太阳能集热系统,R744热泵系统性能在冬季可得到大幅度提高,平均提高34.4%;热水出水温度低于70℃时,系统性能提高幅度超过36.0%;但传热窄点温差增大,系统性能有一定程度下降。  相似文献   

16.
涡旋压缩机闪发器热泵系统的试验研究   总被引:7,自引:1,他引:7  
介绍了涡旋压缩机闪发器热泵系统,并在结构特点方面与对应的过冷器系统作了比较。对研制的闪发器热泵系统原型机进行了试验研究和性能分析。结果表明:随蒸发温度的降低,原型机的制热量有所减少,但减少的速度明显低于普通热泵系统,压缩机耗功有所增加,但增加的幅度不大;闪发器系统在低温工况下比过冷器系统可以更有效提高空气源热泵的低温制热性能,是寒冷地区用小型空气源热泵比较适宜采用的系统。  相似文献   

17.
In this study, the performance of a reversible ground‐source heat pump coupled to a municipality water reticulation system, is compared experimentally and with simulations to a conventional air‐source heat pump for space cooling and heating. A typical municipality water reticulation system comprises hundreds of kilometres of pipes designed in loops that will ensure adequate circulation of water. This results in a substantial heat exchanger with great potential. Indirect heat transfer occurs between the refrigerant and ground via the municipality water reticulation system that acts as the water‐to‐ground heat exchanger. The experimental and simulated comparisons of the ground‐source system to the air‐source system are conducted in both the cooling and the heating cycles. Climatalogical statistics are used to calculate the capacities and coefficients of performance of the ground‐source and air‐source heat pumps. Results obtained from measurements and simulations indicate that the utilization of municipality water reticulation systems as a heat source/sink is a viable method of optimizing energy usage in the air conditioning industry, especially when used in the heating mode. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
An absorption system can be used for space cooling as well as for space heating. This dual purpose may be achieved by using the system as heat pump in wintertime. Absorption heat pump heating may be an interesting alternative, particularly for countries where there is a shortage of electric power.When an absorption unit is used as heat pump, its mode of operation is not modified: the internal temperatures of the cycle are only raised. Commercially available LiBr units were tested as heat pumps. COP and heating capacity were considered as a function of cold source temperature for different temperatures of the useful heat. The COP arrived at 1.7, which must be considered a high value for a thermally driven heat pump.Simulations were carried out in order to compare the performance of “conventional” solar, solar assisted heat pump and the combined series system under two different climate conditions. The series system showed performance 25–75 per cent better than “conventional” solar alone.  相似文献   

19.
太阳能热泵供热水系统的实验研究   总被引:5,自引:1,他引:5  
张喜明  白莉  于立强 《节能技术》2003,21(1):27-27,33
在青岛地区建立一套太阳能热泵实验系统,此系统可以完成冬季太阳能热泵供暖(启动热泵)和非采暖季太阳能直接供热水实验。进行了太阳能热泵冬季供暖的实验研究,测得热泵机组的平均供热系数COP=2.71。  相似文献   

20.
This paper presents a novel air source heat pump for heating of buildings named air source heat pump with multiple parallel outdoor units (ASHPMO). Multiple outdoor units were connected in parallel with the aim of realising alternate defrosting and uninterrupted heating simultaneously. An experimental apparatus of the ASHPMO system was developed. The defrosting performance was experimentally investigated under different outdoor air temperatures, outdoor air relative humidity, and condensation temperatures, among other factors. The test results showed that the novel ASHPMO system could provide continuous heating when defrosting even under an outdoor air temperature of −10°C. Variations in compressor vapour suction and discharge pressure and temperature were observed. The minimum heating capacity could still reach 60% of that without defrosting. Under the defrosting condition with outdoor air temperature −10°C, both the heating coefficient of performance (heating COP) and total energy efficiency ratio (EER) of the system can reach to 2.0 and 2.32, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号