首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以水热共还原法制备纳米W-30%Cu复合粉末,通过真空烧结和包套热挤压制备超细晶W-Cu复合材料,并进行后续热处理。采用X射线衍射、高分辨率透射电镜、扫描电镜等观察和分析W-30%Cu复合粉体和合金的成分及组织形貌,研究热挤压及后续退火处理对材料致密度、电导率和硬度等性能的影响。结果表明:水热产物为纳米级(10~15 nm)规则的类球形结构,经煅烧及共还原后得到的W-30%Cu复合粉末粒度细小,呈特殊的W包覆Cu结构,颗粒分布均匀;复合粉末在1050℃真空烧结后相对密度只有91.5%,经热挤压后致密度提高到97.07%,布氏硬度达到223,组织细密,W相和Cu相分布均匀,钨颗粒细小(1~3μm),形成典型的钨骨架和铜网络结构。经过后续的退火处理,钨铜分布更均匀,钨粒径进一步减小,材料的致密度和电导率都更高,分别为98.82%和43.31%IACS,形成良好的综合性能指标匹配。  相似文献   

2.
在对钨铜复合粉末进行TGA-DTA分析、XRD物相分析和SEM观察分析的基础上,对氧化物粉末共还原工艺进行了改进,对比机械合金化直接制备钨铜复合材料工艺表明:对钨铜氧化物粉末短时快速球磨约3~10h后,能快速细化氧化物粉末粒度(<1μm),降低粉末还原温度(约600℃),可制备高分散的超细钨铜复合粉末(<1μm);在较低的烧结温度(1200℃)下可得到相对密度为99.5%,热导率为205W·m~(-1)·K~(-1)的钨铜烧结制品。  相似文献   

3.
随着微电子信息技术的发展,W-Cu复合材料被用作基片、连接件和散热元件等热沉材料,因而具有更广泛的用途.采用喷雾干燥-氢还原法制备了W-10Cu、W-15Cu和W-20Cu(Cu的质量分数依次为10%、15%和20%)超细钨铜复合粉,并经过成形和烧结制得W-15Cu合金,测量了烧结后的合金导热性能.结果表明,在一定的还原条件下,可以获得粒度细小、氧含量低、钨铜复合均匀的W-Cu复合粉末;W-15Cu合金的相对密度可以达到99.34%,结构组织高度均匀、一致,热导率为184.0 W/m·K,已达到其做为热沉材料的热性能要求.  相似文献   

4.
W-20%Cu超细复合粉末的制备和烧结   总被引:2,自引:0,他引:2  
采用喷雾干燥-氢气还原法制备出W-20%Cu超细复合粉末,并对由该复合粉末所制得的压坯进行了烧结,利用SEM、XRD等分析手段对复合粉末的特性和烧结体的组织进行了表征和观察.试验结果表明:用该方法制备的W-20%Cu超细复合粉末颗粒细小,平均尺寸在200nm左右;喷雾干燥后的氧化物复合粉末在还原后产生了新的合金相(Cu0.4W0.6),还原后的复合粉末由Cu0.4W0.6相和Cu相组成,而且两相的晶粒度达到纳米级,其中Cu0.4W0.6相的晶粒约为33nm,Cu相的晶粒约为63nm;复合粉末具有很高的烧结特性,经烧结后合金相对密度达到98%以上,而且金相组织分布均匀.  相似文献   

5.
以钨酸铵、三水合硝酸铜和柠檬酸为原料,采用溶胶-凝胶自蔓延燃烧法合成前驱体钨铜氧化物,再经氢气还原成钨铜复合粉末,经冷模压制成形并在氢气中烧结制备出钨铜复合材料。通过XRD分析、SEM观察和激光粒度分析对前驱物和还原粉体的组成及性能进行了表征;对烧结体的表面形貌和物理性能进行了研究。结果显示,采用溶胶-凝胶自蔓延燃烧法可制备钨、铜颗粒均匀分布的钨铜复合粉末,其平均粒度在3.5~7.1μm之间,钨、铜颗粒大小为23~42nm。经1 300℃烧结的W-50Cu相对密度和导电率最高,为99.52%和68.96%IACS;经1 300℃烧结的W-20Cu维氏硬度最高,为229。  相似文献   

6.
以钨酸钠和硝酸铜为原料,通过水热合成反应及550℃/1.5 h焙烧得到氧化钨铜复合粉体,氢气还原后获得W-20%Cu复合粉体,采用X射线衍射(XRD)、扫描电镜(SEM)和高分辨透射电镜(HTEM),对该复合粉体的组织与结构进行表征。结果表明:采用水热合成法制备氧化钨铜的前驱体时混合溶液应调整为碱性,最好将pH值控制在9,水热反应产物主要是由CuWO4·2H2O与Cu2WO4(OH)2组成的复合络合物;550℃温度下焙烧时水热合成产物完全分解为由WO3、CuO和CuWO4-x组成的复合氧化物,粒度在2~5μm之间,分布均匀;复合氧化物在700~900℃下氢气还原成为典型的铜包钨结构的钨铜复合粉体,呈规则球形,晶粒度在70 nm左右,钨铜分布均匀,两相一体,保留了溶液中分子级的混合状态。  相似文献   

7.
钨铜氧化物复合粉末前驱体是制备高性能钨铜合金的关键.本文采用水热合成法制备钨铜合金前驱体-钨铜氧化物复合粉体,利用水热合成与共沉淀原理,采用X射线衍射(XRD)、扫描电镜(SEM)和光谱分析仪,研究了不同试剂与制备工艺对复合粉体成份与形貌的影响.研究结果表明,与传统方法相比,水热法工艺简单、易操作,是制备钨铜氧化物复合粉体的良好方法.以偏钨酸铵为原料制备的钨铜氧化物复合粉体颗粒在2~10 μm之间,易团聚;钨酸钠为原料制备的复合粉体颗粒细小,但分布不均.粉体中的铜含量与混合溶液组成及其pH值有很大关系.  相似文献   

8.
为了降低钨骨架的烧结温度和提高钨铜复合材料的性能,采用湿氢烧结工艺制备钨骨架,对湿氢烧结-熔渗法制备的W—15Cu钨铜材料性能进行研究,并对钨的湿氢烧结机理进行探讨。采用扫描电镜(SEM)和X射线衍射仪(XRD)对钨骨架和钨铜复合材料的组织与成分进行观察与分析,并测定材料的密度、气密性、热导率和热膨胀系数(CTE)。结果表明:在1450℃下湿氢烧结2h,钨骨架发生较明显的烧结收缩和致密化。用该钨骨架制备的钨铜材料的各项性能均达到热沉材料的要求。湿氢烧结机理主要是在湿氢条件下,通过反复进行的氧化与还原使金属粉末表面形成激活能较低的新生态原子,从而使烧结温度降低。  相似文献   

9.
共还原法制备W-Cu复合粉   总被引:1,自引:0,他引:1  
利用CuWO4 0 .95 8WO3 前驱体还原方法制备Cu -W复合粉。试验结果表明 ,共还原法制备的Cu/W复合粉两相分布均匀 ,还原温度是影响复合粉体的关键因素。 70 0℃还原时 ,不能形成W包覆Cu相结构 ,80 0℃还原时 ,形成W对Cu相的部分包覆  相似文献   

10.
以水热合成-共还原工艺制备的W-20%Cu(质量分数)复合粉末为原料,用SPS技术成功制备了W-20%Cu复合材料,并对其显微组织和性能进行了分析研究。结果表明:随着烧结温度的升高和保温时间的延长,W、Cu两相微观结构组织分布更为均匀,孔隙也更少,W-20%Cu复合材料的致密度、硬度和电导率也相应提高;在烧结温度950℃、保温时间5min的工艺条件下,W-20%Cu复合材料的致密度、维氏硬度、电导率分别为98.9%、HV222.8、21.7 MS/m。  相似文献   

11.
采用多孔W颗粒粉末制备的高孔隙度钨骨架中可填充高体积分数的铜,从而在保证钨铜复合材料具有低膨胀系数的基础上进一步提高其热导率.该文作者在以WO3为原料配制的料浆中加入造孔剂碳酸铵((NH4)2CO3)和表面活性剂聚乙二醇(PEG),采用喷雾干燥一还原法制备多孔W颗粒粉末,并研究(Nag)2CO3、PEG的加入量以及WO3含量对W颗粒形貌的影响.使用pH计测量pH值和旋转粘度计测定料桨粘度,利用扫描电镜(SEM)和X射线衍射仪(XRD)分别对粉末的形貌和物相组成进行观察与分析.结果表明:料浆中(NH4)2CO3、PEG和WO3的质量分数分别为10%、4%和40%时,得到的多孔W颗粒孔隙度较高;前驱体为球形的WO3粉末时则可在820℃的氧气气氛中还原90min得到纯W相.  相似文献   

12.
本文以酒石酸铜为铜源,采用热分解法制备了粒径约为50 nm的纳米Cu粉末,借助XRD、AFM等表征手段,重点探讨了不同升温速率(1℃/min,5℃/min和10℃/min)对反应产物的物相和形貌的影响。结果表明:升温速率是酒石酸铜热分解制备纳米Cu粉末的控制性因素,慢速升温可显著降低酒石酸铜的热分解温度,促进Cu粉末的纯化和纳米化。  相似文献   

13.
采用喷雾干燥-氢还原法制备超细/纳米晶W-10Cu(质量分数,%)复合粉末,并经过压制和烧结制备W-Cu复合材料,系统研究烧结温度和保温时间对该材料性能和组织的影响,以及在1 100~1 300℃温度范围内的烧结激活能。结果表明,W-10Cu还原粉末晶粒度仅为30~60 nm;在1 200℃烧结时开始发生明显的致密化行为;随烧结温度升高相对密度增大,当烧结温度升高到1 300℃时W-10Cu复合材料的相对密度为90%,但当温度达到1 460℃时有所降低。1 420℃保温90 min时材料相对密度高达99.1%,且此时晶粒度仅为1.8μm。W晶粒尺寸为30~60 nm的W-10Cu复合粉末在1 100~1 300℃烧结的平均激活能为129.14 kJ/mol。烧结温度为1 420℃时W-10Cu的电导率随保温时间延长先增大后减小,保温90 min时最大达到19 MS/m,超过国标有关规定。  相似文献   

14.
微细钨铜复合粉的制备及其烧结过程的研究   总被引:5,自引:0,他引:5  
吴恩熙  钱崇梁 《稀有金属》1993,17(4):263-269
以 WO_3和 CuO 为原料的焙烧-还原法能制取钨颗粒细小(0.1~0.5μm)且 W、Cu 分布均匀的复合粉.此粉末压制、烧结性能良好,可翻取钨晶粒为0.8~1.0μm 的 W-Cu 假合金,合金的相对密度可达98%~99%.研究了 CuWO_4的生成及其氢还原过程,发现它与 WO_3 相比,氢还原相变及其动力学过程存在某些差异.用不同方法翻取的钨铜复合粉的特性及其成型、烧结工艺对合金综合性能的影响进行了比较,指出用焙烧-还原法制取的钨铜复合粉具有优良的工艺特性.  相似文献   

15.
研究了高能球磨时间对W-30Cu复合粉末晶粒度及烧结行为的影响.结果表明,当球磨时间从16h提高到33h时,复合粉的晶粒度由25nm减小到10nm,并发生机械合金化现象;在温度为1275℃烧结60min,经18h高能球磨的复合粉末烧结就可以达到全致密.研究还发现,高能球磨W-30Cu复合粉末具有较好的热稳定性,经950℃退火处理,晶粒尺寸没有发生异常长大现象;经烧结材料的硬度明显高于普通的W-30Cu复合材料.经1 275℃烧结30 min后合金其晶粒尺寸在300~550 nm.  相似文献   

16.
氧化物共还原制取W-Cu和Mo-Cu复合材料的研究   总被引:3,自引:0,他引:3  
近些年来,国内外研究了一些制备高分散度W/Cu和Mo/Cu复合粉末的方法,高分散度的粉末具有高的烧结致密度,用氧化物共还原粉末可在较低温度下进行烧结得到接近和达到100%的理论密度。这样的复合材料有细而均匀的组织和较好的性能。本文报道近来的研究状况,并就共还原法所用的前驱体原料种类、工艺条件、粉末特性和复合材料的性能进行评述。  相似文献   

17.
热机械法制备超细弥散分布钨铜复合粉末   总被引:5,自引:0,他引:5  
本研究在对钨铜粉末共还原的基础上设计了一种热机械法来制备超细弥散分布钨铜复合粉末。对粉末通过SEM、XRD、粒度分析、氧含量及其烧结性能的研究 ,结果显示 :通过对钨铜高温氧化物粉末的短时快速球磨 (约 3~ 10小时 )后 ,复合粉末可在较低的温度下还原彻底 ,而且粉末粒度细小 (0 2 μm左右 ) ,分布均匀 ,比表面增加 ,具有极高的烧结性能。对比机械合金化工艺直接制备钨铜复合材料工艺得知 :对氧化物粉末进行了短时高能球磨 ,快速细化了氧化物粉末粒度 (<1μm) ,降低了粉末还原温度 (6 5 0℃ ) ,制备出高分散的超细钨铜复合粉末 (<1μm) ,在较低的烧结温度 (12 0 0℃ )下得到相对密度为 99 5 %、热导率为 2 0 5W·m- 1 ·K- 1 的钨铜复合材料制品。  相似文献   

18.
以钨酸钠(Na2WO4·2H2O)和硝酸铜(Cu(NO3)2·3H2O)为原料,采用水热反应结合连续煅烧还原工艺制备W/Cu纳米复合粉体,利用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、高分辨透射电镜(HRTEM)、能谱分析仪(EDS)等检测手段,分别对制备过程中各步骤的产物及最终复合粉的组成、形貌及微观结构进行表征,初步分析粉体合成的反应过程及合成机制。研究结果表明:在水热过程中,钨酸钠和硝酸铜发生共沉淀反应,生成类球形的Cu WO4·2H2O和Cu2WO4(OH)2复合络合物,该络合物粉末具有良好的分散性且无硬团聚,颗粒粒度均匀,平均粒径为10~15 nm。750℃煅烧后,水热产物脱水、分解,转变为由Cu WO4-x,Cu O和WO3组成的混合氧化物粉体。经800℃氢气还原,氧化物完全转化成W-Cu复合粉末,该W-Cu复合粉末呈一种特别的W包覆Cu的近球形结构,平均粒径为10~60 nm,且Cu的存在对氧化钨的还原起到了催化作用,致使钨相提早出现。  相似文献   

19.
结合水热法和氢气还原法制备纳米Mo–40Cu复合粉末,利用X射线衍射仪、扫描电子显微镜、透射电镜等手段研究了氢气气氛下烧结工艺对Mo–40Cu复合材料组织和力学性能的影响。结果表明,最佳制粉工艺为水热温度400 ℃和氢气还原温度700 ℃,获得了均匀的Mo–40Cu复合粉末,粉末粒径为70~90 nm;在氢气气氛下最佳烧结工艺为1300 ℃保温2 h,合金的相对密度、抗弯强度、硬度、电导率和热导率分别为98.1%、1060 MPa、HRA 51、20.8 MS·m-1和191.7 W·m-1·K-1,热膨胀系数在500~700 ℃约为10.8×10-6 K-1,合金中组织均匀,晶粒细小,尺寸约为3~4 μm。  相似文献   

20.
通过水热-共还原法制备细晶W-25Cu复合材料,并分析其微观组织和电弧侵蚀后组织形态的变化。结果表明:W-25Cu复合材料的显微组织具有明显的全致密化特点,Cu相将细小W颗粒全部包围,Cu相与W相的分布状态非常均匀,W相的晶粒尺寸为1~3μm,断口区域表现出明显的韧窝断裂特征,断裂阶段还生成了众多弯曲的细密撕裂棱,形成了许多稠密的细小断口韧窝。经电弧侵蚀后,表面物相构成以Cu、W两相为主,表面形貌较为平整,未出现明显的孔洞与裂纹结构。在断裂闭合阶段,材料转移过程基本表现为电弧转移、熔桥转移及喷溅蒸发这几种类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号