共查询到18条相似文献,搜索用时 94 毫秒
1.
应用图形处理器(GPU)来加速粒子群优化(PSO)算法并行计算时,为突出其加速性能,经常有文献以恶化CPU端PSO算法性能为代价。为了科学比较GPU-PSO算法和CPU-PSO算法的性能,提出用"有效加速比"作为算法的性能指标。文中给出的评价方法不需要CPU和GPU端粒子数相同,将GPU并行算法与最优CPU串行算法的性能作比较,以加速收敛到目标精度为准则,在统一计算设备架构(CUDA)下对多个基准测试函数进行了数值仿真实验。结果表明,在GPU上大幅增加粒子数能够加速PSO算法收敛到目标精度,与CPU-PSO相比,获得了10倍以上的"有效加速比"。 相似文献
2.
针对粒子群优化(PSO)算法训练人工神经网络(NN)时面临的计算时间过长问题,引入基于图形处理器(GPU)技术的并行处理解决方法。使用粒子与线程一一对应的并行策略,通过并行处理各个粒子的计算过程来加快整个粒子群的收敛速度,减少粒子群神经网络(PSO-NN)的训练时间。在统一计算设备架构(CUDA)下对一简单测试函数逼近的数值进行仿真,实验结果表明,相较基于CPU的串行PSO-NN,基于GPU的并行PSO-NN在寻优稳定性一致的前提下取得了超过500倍的计算加速比。 相似文献
3.
基于统一计算设备架构(CUDA)对图形处理器(GPU)下的并行粒子群优化(PSO)算法作改进研究。根据CUDA的硬件体系结构特点,可知Block是串行执行的,线程束(Warp)才是流多处理器(SM)调度和执行的基本单位。为了充分利用Block中线程的并行性,提出基于自适应线程束的GPU并行PSO算法:将粒子的维度和线程相对应;利用GPU的Warp级并行,根据维度的不同自适应地将每个粒子与一个或多个Warp相对应;自适应地将一个或多个粒子与每个Block相对应。与已有的粗粒度并行方法(将每个粒子和线程相对应)以及细粒度并行方法(将每个粒子和Block相对应)进行了对比分析,实验结果表明,所提出的并行方法相对前两种并行方法,CPU加速比最多提高了40。 相似文献
4.
5.
6.
7.
针对模拟退火(simulated annealing,SA)算法收敛速度慢,随机采样策略缺乏记忆能力,算法内在的串行性使其具有并行化问题依赖等缺点,提出了基于粒子群优化(particle swarm optimization,PSO)算法的并行模拟退火算法。该算法利用粒子群优化算法中个体的记忆功能引导算法在解空间中开展精细搜索,在反向学习算法基础上设计新的反向转动操作机制增加了算法的多样性,借助PSO的天然并行性克服了SA的并行问题依赖性,并在集群上实现了多Agent协同进化的改进算法。对Toy模型的蛋白质结构预测问题进行了仿真实验,结果表明该算法能有效提高求解问题的质量和效率。 相似文献
8.
9.
10.
基于岛屿群体模型的并行粒子群优化算法 总被引:19,自引:0,他引:19
为改善粒子群优化算法对大规模多变量求解的性能,提出了基于岛屿群体模型的并行粒子群优化算法.对粒子群优化算法机理和本质并行性进行分析,设计和实现了一种并行粒子群优化算法.实验结果表明,基于岛屿群体模型的并行粒子群优化算法不仅提高了求解效率,而且改善了早收敛现象,算法的性能比经典粒子群优化算法有了很大提高. 相似文献
11.
基于CUDA的汇流分析并行算法的研究与实现* 总被引:2,自引:0,他引:2
针对基于数字高程模型(DEM)生成流域等流时线的快速运算问题,提出了一种基于统一设备计算架构(CUDA)平台同时可发挥图形处理器(GPU)并行运算特性的汇流分析的快速并行算法。采用改进后的归并排序算法进行数据排序及新的内存分配策略和改进的并行算法进行汇流分析。用该并行算法和CPU上的串行算法, 对生成基于DEM的等流时线运算时间和矩阵乘法运算时间进行分析验证。实验结果表明,基于CUDA的汇流分析并行算法能提高系统的计算效率,具有较好的效果。 相似文献
12.
GPU可以快速有效的处理海量数据,因此在近些年成为图形图像数据处理领域的研究热点。针对现有GPU渲染中在处理含有大量相同或相似模型场景时存在资源利用率低下和带宽消耗过大的问题,在原有GPU渲染架构的基础上提出了一种基于CUDA的加速渲染方法。在该方法中,根据现有的GPU渲染模式构建对应的模型,通过模型找出其不足,从而引申出常量内存的概念;然后分析常量内存的特性以及对渲染产生的作用,从而引入基于常量内存控制的方法来实现渲染的加速,整个渲染过程可以通过渲染算法进行控制。实验结果表明,该方法对解决上述问题具有较好的效果,最终实现加速渲染。 相似文献
13.
在粒子方法中,运用邻近粒子搜索算法可以快速获取每个粒子的邻近粒子信息。由于粒子方法模拟一个体系的行为所采用的粒子数据是十分庞大的,对计算机的运算速度提出了挑战。研究了GPU的计算能力和CUDA开发环境,利用GPU的并行多线程处理技术,提出了一种并行邻近粒子搜索算法。实验结果表明,基于CUDA的并行邻近粒子搜索算法,加快了邻近粒子搜索过程,显著地减少了计算时间,成功实现了硬件加速,可获取290以上的加速比,对大规模粒子系统呈现出高效的处理能力。 相似文献
14.
传统的多目标进化算法多是基于Pareto最优概念的类随机搜索算法,求解速度较慢,特别是当问题维度变高,需要群体规模较大时,上述问题更加凸显。这一问题已经获得越来越多研究人员以及从业人员的关注。实验仿真中可以发现,构造非支配集和保持群体多样性这两部分工作占用了算法99%以上的执行时间。解决上述问题的一个有效方法就是对这一部分算法进行并行化改造。本文提出了一种基于CUDA平台的并行化解决方案,采用小生境技术实现共享适应度来维持候选解集的多样性,将多目标进化算法的实现全部置于GPU端,区别于以往研究中非支配排序的部分工作以及群体多样性保持的全部工作仍在CPU上执行。通过对ZDT系列函数的仿真结果,可以看出本文算法性能远远优于NSGA-Ⅱ和NPGA。最后通过求解油品调和过程这一有约束多目标优化问题,可以看出在解决化工应用中的有约束多目标优化问题时,该算法依然表现出优异的加速效果。 相似文献
15.
针对无线传感器网络(WSNs)节点定位问题,阐述了WSNs的分布迭代式定位方法研究。这种方法将每次迭代后定位的节点作为其余未知节点的参考节点.同时将基于测距定位问题看成一个多维优化问题,并提出利用具有快速收敛能力的量子行为粒子群优化(QPSO)算法进行求解。最后将仿真实验结果与粒子群优化(PSO)算法进行比较,表明QPSO算法在优化性能上优于PSO算法,有效提高了节点定位精度,证明该方法的有效性。 相似文献
16.
17.
基于粒子群优化算法的多交叉口信号配时* 总被引:3,自引:1,他引:3
以城市道路多个单点信号控制交叉口组成的绿波系统为研究对象,对绿波系统的交叉口信号配时优化进行研究。通过对路段和干线机动车流进行协调控制设计,以西安市某两相邻交叉口晚高峰时段各进口道的交通量、通行能力、饱和流量以及各交叉口进口道的实际车均延误时间为约束,确定各交叉口的信号周期及各相位有效绿灯时长,使得干线延误量最小。设计了PSO算法的编码方式,分别采用PSO算法、灾变PSO算法和二阶振荡PSO算法对多交叉口交通信号配时进行优化计算。仿真实验表明,二阶振荡PSO算法在该实例中表现最优。 相似文献
18.
首先引入自适应算子对标准粒子群优化算法PSO的惯性权重和学习因子进行改进,以提高其探索当前空间和开发未知空间之间的平衡性。同时,采用非线性函数来构建回声状态网络ESN储备池内部状态之间的非线性关系。接着利用改进的粒子群优化算法APSO对非线性回声状态网络NESN的关键参数进行优化,以构建APSO-NESN组合预测模型。最后运用该模型进行电力需求预测。实验结果表明,相比自回归移动平均模型、多元线性回归、标准ESN及其他预测模型,APSO-NESN模型具有更高的预测精度。 相似文献