首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In adverse driving conditions, such as inclement weather and/or complex terrain, trucks are often involved in single-vehicle (SV) accidents in addition to multi-vehicle (MV) accidents. Ten-year accident data involving trucks on rural highway from the Highway Safety Information System (HSIS) is studied to investigate the difference in driver-injury severity between SV and MV accidents by using mixed logit models. Injury severity from SV and MV accidents involving trucks on rural highways is modeled separately and their respective critical risk factors such as driver, vehicle, temporal, roadway, environmental and accident characteristics are evaluated. It is found that there exists substantial difference between the impacts from a variety of variables on the driver-injury severity in MV and SV accidents. By conducting the injury severity study for MV and SV accidents involving trucks separately, some new or more comprehensive observations, which have not been covered in the existing studies can be made. Estimation findings indicate that the snow road surface and light traffic indicators will be better modeled as random parameters in SV and MV models respectively. As a result, the complex interactions of various variables and the nature of truck-driver injury are able to be disclosed in a better way. Based on the improved understanding on the injury severity of truck drivers from truck-involved accidents, it is expected that more rational and effective injury prevention strategy may be developed for truck drivers under different driving conditions in the future.  相似文献   

2.
The development of a wet weather safety index, WWSIe, is presented. WWSIe is an empirical formulation based on prediction equations for wet accident rates. These equations were derived by multiple regression techniques from a survey of 68 highway segments in Texas. These segments covered a range of wet accident rates from zero to 40 accidents per year per mile. In general, much higher values of wet accident rates are observed in urban areas than in rural areas. Also, the sensitivity to pavement skid resistance is much higher in urban than in rural areas. The findings and developments reported warrant a restructuring of many state programs to reduce wet weather accidents. The Wet Weather Safety Index and associated equations represent a practical method of predicting wet accident rates as a function of traffic, road geometric, and pavements surface characteristics. These predictive equations may be cautiously used to determine accident reduction due to specific remedial measures. These new developments can be integrated into a comprehensive plan to reduce wet weather accidents, a plan which should greatly increase the effectiveness of those resources devoted to this objective.  相似文献   

3.
A large body of previous literature has used a variety of count-data modeling techniques to study factors that affect the frequency of highway accidents over some time period on roadway segments of a specified length. An alternative approach to this problem views vehicle accident rates (accidents per mile driven) directly instead of their frequencies. Viewing the problem as continuous data instead of count data creates a problem in that roadway segments that do not have any observed accidents over the identified time period create continuous data that are left-censored at zero. Past research has appropriately applied a tobit regression model to address this censoring problem, but this research has been limited in accounting for unobserved heterogeneity because it has been assumed that the parameter estimates are fixed over roadway-segment observations. Using 9-year data from urban interstates in Indiana, this paper employs a random-parameters tobit regression to account for unobserved heterogeneity in the study of motor-vehicle accident rates. The empirical results show that the random-parameters tobit model outperforms its fixed-parameters counterpart and has the potential to provide a fuller understanding of the factors determining accident rates on specific roadway segments.  相似文献   

4.
In this paper, two-state Markov switching models are proposed to study accident frequencies. These models assume that there are two unobserved states of roadway safety, and that roadway entities (roadway segments) can switch between these states over time. The states are distinct, in the sense that in the different states accident frequencies are generated by separate counting processes (by separate Poisson or negative binomial processes). To demonstrate the applicability of the approach presented herein, two-state Markov switching negative binomial models are estimated using five-year accident frequencies on Indiana interstate highway segments. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) negative binomial model. It is found that the more frequent state is safer and it is correlated with better weather conditions. The less frequent state is found to be less safe and to be correlated with adverse weather conditions.  相似文献   

5.
There has been an abundance of research that has used Poisson models and its variants (negative binomial and zero-inflated models) to improve our understanding of the factors that affect accident frequencies on roadway segments. This study explores the application of an alternate method, tobit regression, by viewing vehicle accident rates directly (instead of frequencies) as a continuous variable that is left-censored at zero. Using data from vehicle accidents on Indiana interstates, the estimation results show that many factors relating to pavement condition, roadway geometrics and traffic characteristics significantly affect vehicle accident rates.  相似文献   

6.
In this study, two-state Markov switching multinomial logit models are proposed for statistical modeling of accident-injury severities. These models assume Markov switching over time between two unobserved states of roadway safety as a means of accounting for potential unobserved heterogeneity. The states are distinct in the sense that in different states accident-severity outcomes are generated by separate multinomial logit processes. To demonstrate the applicability of the approach, two-state Markov switching multinomial logit models are estimated for severity outcomes of accidents occurring on Indiana roads over a four-year time period. Bayesian inference methods and Markov Chain Monte Carlo (MCMC) simulations are used for model estimation. The estimated Markov switching models result in a superior statistical fit relative to the standard (single-state) multinomial logit models for a number of roadway classes and accident types. It is found that the more frequent state of roadway safety is correlated with better weather conditions and that the less frequent state is correlated with adverse weather conditions.  相似文献   

7.
This paper presents an empirical inquiry into the applicability of zero-altered counting processes to roadway section accident frequencies. The intent of such a counting process is to distinguish sections of roadway that are truly safe (near zero-accident likelihood) from those that are unsafe but happen to have zero accidents observed during the period of observation (e.g. one year). Traditional applications of Poisson and negative binomial accident frequency models do not account for this distinction and thus can produce biased coefficient estimates because of the preponderance of zero-accident observations. Zero-altered probability processes such as the zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) distributions are examined and proposed for accident frequencies by roadway functional class and geographic location. The findings show that the ZIP structure models are promising and have great flexibility in uncovering processes affecting accident frequencies on roadway sections observed with zero accidents and those with observed accident occurrences. This flexibility allows highway engineers to better isolate design factors that contribute to accident occurrence and also provides additional insight into variables that determine the relative accident likelihoods of safe versus unsafe roadways. The generic nature of the models and the relatively good power of the Vuong specification test used in the non-nested hypotheses of model specifications offers roadway designers the potential to develop a global family of models for accident frequency prediction that can be embedded in a larger safety management system.  相似文献   

8.
Taking into consideration the increasing availability of real-time traffic data and stimulated by the importance of proactive safety management, this paper attempts to provide a review of the effect of traffic and weather characteristics on road safety, identify the gaps and discuss the needs for further research. Despite the existence of generally mixed evidence on the effect of traffic parameters, a few patterns can be observed. For instance, traffic flow seems to have a non-linear relationship with accident rates, even though some studies suggest linear relationship with accidents. On the other hand, increased speed limits have found to have a straightforward positive relationship with accident occurrence. Regarding weather effects, the effect of precipitation is quite consistent and leads generally to increased accident frequency but does not seem to have a consistent effect on severity. The impact of other weather parameters on safety, such as visibility, wind speed and temperature is not found straightforward so far. The increasing use of real-time data not only makes easier to identify the safety impact of traffic and weather characteristics, but most importantly makes possible the identification of their combined effect. The more systematic use of these real-time data may address several of the research gaps identified in this research.  相似文献   

9.
Signing of non-permanent road surface conditions, such as ice, is difficult because hazard formation, location, and duration are unpredictable. Subsequently, many state transportation departments have begun to question the sensibility of expending material and personnel resources to maintain ice warning signs when little proof exists of their effectiveness in improving highway safety. This research statistically studies the effectiveness of ice warning signs in reducing accident frequency and accident severity in Washington State. Our findings show that the presence of ice warning signs was not a significant factor in reducing ice-accident frequency or ice-accident severity. However, we were able to identify significant spatial, temporal, traffic, roadway and accident characteristics that influenced ice-accident frequency and severity. The identification of these characteristics will allow for better placement of ice warning signs and improvements in roadway and roadside design that can reduce the frequency and severity of ice-related accidents.  相似文献   

10.
The research described in this paper analyzed injury severities at a disaggregate level for single-vehicle (SV) and multi-vehicle (MV) large truck at-fault accidents for rural and urban locations in Alabama. Given the occurrence of a crash, four separate random parameter logit models of injury severity (with possible outcomes of major, minor, and possible or no injury) were estimated. The models identified different sets of factors that can lead to effective policy decisions aimed at reducing large truck-at-fault accidents for respective locations. The results of the study clearly indicated that there are differences between the influences of a variety of variables on the injury severities resulting from urban vs. rural SV and MV large truck at-fault accidents. The results showed that some variables were significant only in one type of accident model (SV or MV) but not in the other accident model. Again, some variables were found to be significant in one location (rural or urban) but not in other locations. The study also identified important factors that significantly impact the injury severity resulting from SV and MV large truck at-fault accidents in urban and rural locations based on the estimated values of average direct pseudo-elasticity. A careful study of the results of this study will help policy makers and transportation agencies identify location specific recommendations to increase safety awareness related to large truck involved accidents and to improve overall highway safety.  相似文献   

11.
While rural freeways generally have lower crash rates, interactions between driver behavior, traffic and geometric characteristics, and adverse weather conditions may increase the crash risk along some freeway sections. This paper examines the safety effects of roadway geometrics on crash occurrence along a freeway section that features mountainous terrain and adverse weather. Starting from preliminary exploration using Poisson models, Bayesian hierarchical models with spatial and random effects were developed to efficiently model the crash frequencies on road segments on the 20-mile freeway section of study. Crash data for 6 years (2000–2005), roadway geometry, traffic characteristics and weather information in addition to the effect of steep slopes and adverse weather of snow and dry seasons, were used in the investigation. Estimation of the model coefficients indicates that roadway geometry is significantly associated with crash risk; segments with steep downgrades were found to drastically increase the crash risk. Moreover, this crash risk could be significantly increased during snow season compared to dry season as a confounding effect between grades and pavement condition. Moreover, sites with higher degree of curvature, wider medians and an increase of the number of lanes appear to be associated with lower crash rate. Finally, a Bayesian ranking technique was implemented to rank the hazard levels of the roadway segments; the results confirmed that segments with steep downgrades are more crash prone along the study section.  相似文献   

12.
Relatively recent research has illustrated the potential that tobit regression has in studying factors that affect vehicle accident rates (accidents per distance traveled) on specific roadway segments. Tobit regression has been used because accident rates on specific roadway segments are continuous data that are left-censored at zero (they are censored because accidents may not be observed on all roadway segments during the period over which data are collected). This censoring may arise from a number of sources, one of which being the possibility that less severe crashes may be under-reported and thus may be less likely to appear in crash databases. Traditional tobit-regression analyses have dealt with the overall accident rate (all crashes regardless of injury severity), so the issue of censoring by the severity of crashes has not been addressed. However, a tobit-regression approach that considers accident rates by injury-severity level, such as the rate of no-injury, possible injury and injury accidents per distance traveled (as opposed to all accidents regardless of injury-severity), can potentially provide new insights, and address the possibility that censoring may vary by crash-injury severity. Using five-year data from highways in Washington State, this paper estimates a multivariate tobit model of accident-injury-severity rates that addresses the possibility of differential censoring across injury-severity levels, while also accounting for the possible contemporaneous error correlation resulting from commonly shared unobserved characteristics across roadway segments. The empirical results show that the multivariate tobit model outperforms its univariate counterpart, is practically equivalent to the multivariate negative binomial model, and has the potential to provide a fuller understanding of the factors determining accident-injury-severity rates on specific roadway segments.  相似文献   

13.
Modeling vehicle accidents and highway geometric design relationships   总被引:3,自引:0,他引:3  
The statistical properties of four regression models—two conventional linear regression models and two Poisson regression models—are investigated in terms of their ability to model vehicle accidents and highway geometric design relationships. Potential limitations of these models pertaining to their underlying distributional assumptions, estimation procedures, functional form of accident rate, and sensitivity to short road sections, are identified. Important issues, such as the treatment of vehicle exposure and traffic conditions, and data uncertainties due to sampling and nonsampling errors, are also discussed. Roadway and truck accident data from the Highway Safety Information System (HSIS), a highway safety data base administered by the Federal Highway Administration (FHWA), have been employed to illustrate the use and the limitations of these models. It is demonstrated that the conventional linear regression models lack the distributional property to describe adequately random, discrete, nonnegative, and typically sporadic vehicle accident events on the road. As a result, these models are not appropriate to make probabilistic statements about vehicle accidents, and the test statistics derived from these models are questionable. The Poisson regression models, on the other hand, possess most of the desirable statistical properties in developing the relationships. However, if the vehicle accident data are found to be significantly overdispersed relative to its mean, then using the Poisson regression models may overstate or understate the likelihood of vehicle accidents on the road. More general probability distributions may have to be considered.  相似文献   

14.
In recent years there have been numerous studies that have sought to understand the factors that determine the frequency of accidents on roadway segments over some period of time, using count data models and their variants (negative binomial and zero-inflated models). This study seeks to explore the use of random-parameters count models as another methodological alternative in analyzing accident frequencies. The empirical results show that random-parameters count models have the potential to provide a fuller understanding of the factors determining accident frequencies.  相似文献   

15.
In addition to multi-vehicle accidents, large trucks are also prone to single-vehicle accidents on the mountainous interstate highways due to the complex terrain and fast-changing weather. By integrating both historical data analysis and simulations, a multi-scale approach is developed to evaluate the traffic safety and operational performance of large trucks on mountainous interstate highways in both scales of individual vehicle as well as traffic on the whole highway. A typical mountainous highway in Colorado is studied for demonstration purposes. Firstly, the ten-year historical accident records are analyzed to identify the accident-vulnerable-locations (AVLs) and site-specific critical adverse driving conditions. Secondly, simulation-based single-vehicle assessment is performed for different driving conditions at those AVLs along the whole corridor. Finally, the cellular-automaton (CA)-based simulation is carried out to evaluate the multi-vehicle traffic safety as well as the operational performance of the traffic by considering the actual speed limits, including the differential speed limits (DSL) at some locations. It is found that the multi-scale approach can provide insightful and comprehensive observations of the highway performance, which is especially important for mountainous highways.  相似文献   

16.
Statistical regression models, such as logit or ordered probit/logit models, have been widely employed to analyze injury severity of traffic accidents. However, most regression models have their own model assumptions and pre-defined underlying relationships between dependent and independent variables. If these assumptions are violated, the model could lead to erroneous estimations of injury likelihood. The classification and regression tree (CART), one of the most widely applied data mining techniques, has been commonly employed in business administration, industry, and engineering. CART does not require any pre-defined underlying relationship between target (dependent) variable and predictors (independent variables) and has been shown to be a powerful tool, particularly for dealing with prediction and classification problems. This study uses the 2001 accident data for Taipei, Taiwan. A CART model was developed to establish the relationship between injury severity and driver/vehicle characteristics, highway/environmental variables and accident variables. The results indicate that the most important variable associated with crash severity is the vehicle type. Pedestrians, motorcycle and bicycle riders are identified to have higher risks of being injured than other types of vehicle drivers in traffic accidents.  相似文献   

17.
Multi-vehicle rear-end accidents constitute a substantial portion of the accidents occurring at signalized intersections. To examine the accident characteristics, this study utilized the 2001 Florida traffic accident data to investigate the accident propensity for different vehicle roles (striking or struck) that are involved in the accidents and identify the significant risk factors related to the traffic environment, the driver characteristics, and the vehicle types. The Quasi-induced exposure concept and the multiple logistic regression technique are used to perform this analysis. The results showed that seven road environment factors (number of lanes, divided/undivided highway, accident time, road surface condition, highway character, urban/rural, and speed limit), five factors related to striking role (vehicle type, driver age, alcohol/drug use, driver residence, and gender), and four factors related to struck role (vehicle type, driver age, driver residence, and gender) are significantly associated with the risk of rear-end accidents. Furthermore, the logistic regression technique confirmed several significant interaction effects between those risk factors.  相似文献   

18.
Compliance to standardized highway design criteria is considered essential to ensure roadway safety. However, for a variety of reasons, situations arise where exceptions to standard-design criteria are requested and accepted after review. This research explores the impact that such design exceptions have on the frequency and severity of highway accidents in Indiana. Data on accidents at carefully selected roadway sites with and without design exceptions are used to estimate appropriate statistical models of the frequency and severity of accidents at these sites using recent statistical advances with mixing distributions. The results of the modeling process show that presence of approved design exceptions has not had a statistically significant effect on the average frequency or severity of accidents - suggesting that current procedures for granting design exceptions have been sufficiently rigorous to avoid adverse safety impacts. However, the findings do suggest that the process that determines the frequency of accidents does vary between roadway sites with design exceptions and those without.  相似文献   

19.
The goal of this paper is to evaluate whether the incentives incorporated in toll highway concession contracts in order to encourage private operators to adopt measures to reduce accidents are actually effective at improving safety. To this end, we implemented negative binomial regression models using information about highway characteristics and accident data from toll highway concessions in Spain from 2007 to 2009. Our results show that even though road safety is highly influenced by variables that are not managed by the contractor, such as the annual average daily traffic (AADT), the percentage of heavy vehicles on the highway, number of lanes, number of intersections and average speed; the implementation of these incentives has a positive influence on the reduction of accidents and injuries. Consequently, this measure seems to be an effective way of improving safety performance in road networks.  相似文献   

20.
The influence of intersection features on safety has been examined extensively because intersections experience a relatively large proportion of motor vehicle conflicts and crashes. Although there are distinct differences between passenger cars and large trucks-size, operating characteristics, dimensions, and weight-modeling crash counts across vehicle types is rarely addressed. This paper develops and presents a multivariate regression model of crash frequencies by collision vehicle type using crash data for urban signalized intersections in Tennessee. In addition, the performance of univariate Poisson-lognormal (UVPLN), multivariate Poisson (MVP), and multivariate Poisson-lognormal (MVPLN) regression models in establishing the relationship between crashes, traffic factors, and geometric design of roadway intersections is investigated. Bayesian methods are used to estimate the unknown parameters of these models. The evaluation results suggest that the MVPLN model possesses most of the desirable statistical properties in developing the relationships. Compared to the UVPLN and MVP models, the MVPLN model better identifies significant factors and predicts crash frequencies. The findings suggest that traffic volume, truck percentage, lighting condition, and intersection angle significantly affect intersection safety. Important differences in car, car–truck, and truck crash frequencies with respect to various risk factors were found to exist between models. The paper provides some new or more comprehensive observations that have not been covered in previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号