首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three types of wastes, metallurgical slag from Pb production (SLG), the sand-sized (0.1-2 mm) fraction of MSWI bottom ash from a grate furnace (SF), and boiler and fly ash from a fluidised bed incinerator (BFA), were characterized and used to replace the fine aggregate during preparation of cement mortar. The chemical and mineralogical behaviour of these wastes along with the reactivities of the wastes with lime and the hydration behaviour of ordinary Portland cement paste with and without these wastes added were evaluated by various chemical and instrumental techniques. The compressive strengths of the cement mortars containing waste as a partial substitution of fine aggregates were also assessed. Finally, leaching studies of the wastes and waste containing cement mortars were conducted. SLG addition does not show any adverse affect during the hydration of cement, or on the compressive strengths behaviours of mortars. Formation of expansive products like ettringite, aluminium hydroxide and H2 gas due to the reaction of some constituents of BFA and SF with alkali creates some cracks in the paste as well as in the cement mortars, which lower the compressive strength of the cement mortars. However, utilization of all materials in cement-based application significantly improves the leaching behaviour of the majority of the toxic elements compared to the waste as such.  相似文献   

2.
This second of two articles dealing with the utilization of MSWI fly ash in blended cement studies the effects of two variants of the stabilization process on the behavior of the treated fly ash (TFA) introduced into cement-based mortars. From a technological point of view, the modifications of the process are very efficient and eliminate the swelling produced by the introduction of MSWI fly ash in cement-based mortars. TFA has a significant activity in cement-based mortars and can also advantageously replace a part of the cement in cement-based material. From an environmental point of view, the results of traditional leaching tests on monolithic and crushed mortars highlight a poor stabilization of some harmful elements such as antimony and chromium. The use of a cement rich in ground granulated blast furnace slag (GGBFS) with a view to stabilizing the chromium is not efficient. Since neither adequate tests nor quality criteria exist to evaluate the pollutant potential of a waste with a view to reusing it, it is difficult to conclude on the environmental soundness of such a practice. Further experiments are necessary to investigate the environmental impact of TFA introduced in cement-based mortars depending on the reuse scenario.  相似文献   

3.
李志坤  彭家惠  杨再富 《材料导报》2017,31(12):115-120
高性能减水剂与水泥适应性差会导致混凝土流动性和坍落度损失过快,矿物掺合料将影响高性能减水剂与水泥的相容性。对比研究矿物掺合料种类和掺量对水泥净浆、砂浆和混凝土流动性的影响;采用TOC法测试了矿物掺合料对聚羧酸减水剂吸附量的影响;分析了矿物掺合料影响聚羧酸减水剂与水泥相容性的机理。结果表明,粉煤灰和矿渣对提高水泥净浆流动性具有一定的叠加效应,可用胶砂减水率的加权平均值进行量化;硅灰对水泥浆体流动性的不利影响远大于粉煤灰和矿渣的辅助减水分散作用,不利于改善聚羧酸减水剂与水泥的相容性;粉煤灰和矿渣增加聚羧酸减水剂在水泥体系中的吸附量;粉煤灰和矿渣对聚羧酸减水剂在混凝土中的减水分散效果有改善作用但不显著。  相似文献   

4.
Finely ground glass has pozzolanic properties that make attractive its recycling as supplementary cementitious material. This paper compares the behaviour of waste glass powders of different fineness with that of natural pozzolana, coal fly ash and silica fume. Chemical analysis, compressive strength measurements and durability tests were carried out to investigate the effect of ground glass on strength and durability performances of mortars. Blended both with Portland cement and lime, ground glass improved strength, resistance to chloride penetration and resistance to sulphate attack of mortars more than natural pozzolana and similarly to fly ash. Mortars with ground glass immersed in water for seven years did not show any sign of degradation and increased their compressive strength. The ranking of ground glass with respect to the other mineral additions was not affected by fineness.  相似文献   

5.
针对大掺量粉煤灰、矿渣粉导致干混砂浆早期强度和后期强度较低的问题,研究脱硫石膏对该干混砂浆性能的影响;采用X射线衍射、扫描电镜及孔结构分析等手段进行微观机理讨论。结果表明,在大掺量粉煤灰矿粉干混砂浆中掺加占胶凝材料总质量6%~8%的脱硫石膏,对和易性无不良影响,并可显著提高浆体的抗压强度及拉伸粘结强度,收缩率降低10%以上,并改善抗碳化能力,使砂浆体积更稳定;脱硫石膏对粉煤灰及矿渣粉起到激发硫酸盐和碱性的双重作用,并在一定程度上促进水泥水化;胶凝材料的水化产物改善砂浆浆体内部结构,使砂浆浆体中的孔隙大大减少。  相似文献   

6.
The geological repository of nuclear waste in concrete containers is a possible storage method explored by ANDRA (Agence Nationale pour la gestion des Déchets RadioActifs). The concrete must display a high confinement capacity for long periods, characterized by low transport properties and by the acido-basic buffer of hydrated cement. During service life, these properties can be endangered by chemical attack of underground water. The cement type has an important influence on the concrete's performances. Then, it is essential to establish appropriate mixtures with accurate components. In this work an ordinary Portland cement and a fly ash and blast furnace slag blended cement are compared. To determine confinement capacities, transfer properties and mortars microstructure were investigated. To predict the long term behaviour, an ammonium nitrate test has been developed to enhance decalcification and to accelerate hydrolysis of cementitious materials. Measurement of degraded depth with time regarding calcium content was carried out. Impact of decalcification on transport properties was evaluated. Fly ash and blast furnace slag provide better properties for native mortars, and more particularly diffusion properties, but not as much as necessary to limit leaching in degraded material by chemical attack.  相似文献   

7.
Over the last decade, new types of display technologies have increasingly replaced cathode ray tube (CRT) displays leading to an increase in the disposal of discarded old CRT monitors and TV sets. The present study is a further development of our previous work to explore the effects of using different size fractions of crushed CRT glass as 100 % substitution of sand in cement mortar. A range of cement mortar mixes were prepared and the tests conducted included table flow (fluidity), mechanical strength, drying shrinkage, alkali–silica reaction (ASR) expansion and toxicity characteristic leaching procedures. Generally, the results obtained for the CRT glass-based cement mortars were comparable to those of the beverage glass mortars except the hardened density due to the presence of lead in the CRT glass. Decreasing the particle size of the CRT glass led to a decrease in fluidity, compressive strength and water absorption. However, the use of finer glass particles slightly improved the flexural strength and reduced the risk of expansion due to ASR due to its pozzolanic reaction. The experimental results indicated that treated CRT glass can be utilized as 100 % replacement of sand in cement mortar regardless of its particle size.  相似文献   

8.
Portland cement blended with waste products such as blast furnace slag and fly ash are frequently used to create more sustainable concrete, but their nanoscale mechanical behavior, particularly after thermal damage, has not been well-studied. Here, nanoindentation experiments confirm that concrete produced with blended cements contains hydration products with nearly identical nanoscale mechanical properties to the hydration products found in concretes produced with ordinary Portland cement. The volume fractions of the hydration products, particularly calcium-silicate-hydrate (C-S-H) phases, are formed in different proportions with the addition of fly ash and blast furnace slag. After exposure to fire damage, the nanoscale behavior of concretes produced with fly ash and slag also matches the nanoscale behavior of conventional concretes. This suggests that any macroscopic differences between fire damage behavior of blended cement concrete and ordinary Portland cement concrete must have origins in a larger length scale.  相似文献   

9.
Granulated slag from metal industries and fly ash from the combustion of coal are among the industrial by-products and have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, compared with Portland cement, the hydration of concrete containing fly ash or slag is much more complex. In this paper, by considering the producing of calcium hydroxide in cement hydration and the consumption of it in the reaction of mineral admixtures, a numerical model is proposed to simulate the hydration of concrete containing fly ash or slag. The heat evolution rate of fly ash or slag blended concrete is determined from the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, a temperature rise in blended concrete is evaluated based on the degree of hydration of cement and mineral admixtures. The proposed model is verified with experimental data on the concrete with different water-to-cement ratios and mineral admixtures substitution ratios.  相似文献   

10.
Laboratory flow, strength, and ultrasnic pulse velocity tests were performed on mortars made with 70% (by weight) of portland cement and 30% of pozzolanic materials where the pozzolanic materials consisted of various combinations of fly ash and silica fume. In addition to these ternary systems, binary blends, such as Portland cement and fly ash, and Portland cement and silica fume, along with 100% Portland cement mortars, were investigated for comparison. The purpose of the investigation, preliminary in nature, was to see under what circumstances, if any, would be a synergistic action when a ternary system of Portland cement-fly ash-silica fume is used in a mortar or concrete.Mortars were made with two cements of type I and two cements of type III along with class F and class C fly ashes. One silica fume was used. Standard flow tests were performed on the fresh mortars, and compressive strength as well as ultrasonic pulse velocity tests were performed with each hardened mortar at various ages up to 28 days. It is expected that the results and conclusions obtained here on mortars will be transferable to concretes.There are several novel, or at least lesser known, results of the investigation. For instance, a new explanation is offered for the plasticizing effect of fly ash which is based on the optimum particle-size distribution concept. Another such result is that ground fly ash produced greater flow increases with type I cement than with type III. A third finding is that the superplasticizer is more effective in increasing the flow as well as strength when the mortars contain fly ash and/or silica fume than in the case of mortars without mineral admixture. Also, it appears that when type I cement is used, the silica fume in the quantity of 5% of the weight of the cement produces relatively greater strength increase in the presence of fly ash than without fly ash.These promising results are preliminary in nature. Therefore, further research is justified with ternary systems in concrete. The presented work is a portion of a larger investigation.  相似文献   

11.
周婷  林健 《材料导报》2011,25(21):66-70
介绍了国内外以冶金矿渣、尾矿渣及粉煤灰、城市垃圾焚烧飞灰为主要原料的废渣微晶玻璃的研究概况,分别对其组成、结构与性能、种类与制备等方面做了分析。重点综述了彩色废渣微晶玻璃的研究现状,在废渣微晶玻璃的基础上,调节玻璃组分,以硒粉、氧化铬、氧化锰等作为着色剂,通过采用一次着色或二次着色工艺,可制备出色彩丰富的废渣微晶玻璃,市场潜力巨大。最后展望了工业及生活废渣制备微晶玻璃的未来发展。  相似文献   

12.
This paper presents an investigation of the compressive strength and the durability of lignite bottom ash geopolymer mortars in 3% sulfuric acid and 5% sodium sulfate solutions. Three finenesses of ground bottom ash viz., fine, medium and coarse bottom ash were used to make geopolymer mortars. Sodium silicate, sodium hydroxide and curing temperature of 75 °C for 48 h were used to activate the geopolymerization. The results were compared to those of Portland cement and high volume fly ash mortars. It was found that the fine bottom ash was more reactive and gave geopolymer mortars with higher compressive strengths than those of the coarser fly ashes. All bottom ash geopolymer mortars were less susceptible to the attack by sodium sulfate and sulfuric acid solutions than the traditional Portland cement mortars.  相似文献   

13.
Disposal of MSWI fly ash through a combined washing-immobilisation process   总被引:15,自引:0,他引:15  
The objective of this work was to investigate the feasibility of a combined washing-immobilisation process as a means of optimising the disposal of fly ash resulting from municipal solid waste incineration (MSWI) in cementitious matrices. Two different types of Italian MSWI fly ash and an ordinary Portland cement (ASTM Type I) were used. Washing pre-treatment of fly ash with water always produces a wastewater that can be successfully treated by reducing the pH to values of 6.5-7.5. This treatment is capable of removing the detected contaminants (Al, Cd, Pb, Zn) through two different mechanisms: precipitation of aluminium hydroxide and adsorption of cadmium, lead and zinc ions onto floc particles of Al(OH)(3). Setting and leaching tests on cementitious mixes prove that the hazardous sludge produced from wastewater treatment can be completely mixed with washed fly ash and this mixture can be incorporated into cementitious matrices to a great extent (75 wt.% of total solid) without the risks of an unacceptable delay of cement setting and an excessive heavy metals leachability from solidified products. The better performance of the combined washing-immobilisation process as compared to the immobilisation process of unwashed fly ash may be ascribed primarily to the ability of the washing step in promoting the formation of hydrate phases that incorporate and/or convert heavy metal compounds into less reactive forms and, secondarily, to its ability of removing significant amounts of alkali chlorides and sulphates from fly ash. As a result, MSWI fly ash is transformed into a material that adversely affects cement hydration to a much lower extent than unwashed fly ash.  相似文献   

14.
Factors affecting hazardous waste solidification/stabilization: a review   总被引:1,自引:0,他引:1  
Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.  相似文献   

15.
Rapid advances in the electronic industry led to an excessive amount of early disposal of older electronic devices such as computer monitors and old televisions (TV) before the end of their useful life. The management of cathode ray tubes (CRT), which have been a key component in computer monitors and TV sets, has become a major environmental problem worldwide. Therefore, there is a pressing need to develop sustainable alternative methods to manage hazardous CRT glass waste. This study assesses the feasibility of utilizing CRT glass as a substitute for natural aggregates in cement mortar. The CRT glass investigated was an acid-washed funnel glass of dismantled CRT from computer monitors and old TV sets. The mechanical properties of mortar mixes containing 0%, 25%, 50%, 75% and 100% of CRT glass were investigated. The potential of the alkali-silica reaction (ASR) and leachability of lead were also evaluated. The results confirmed that the properties of the mortar mixes prepared with CRT glass was similar to that of the control mortar using sand as fine aggregate, and displayed innocuous behaviour in the ASR expansion test. Incorporating CRT glass in cement mortar successfully prevented the leaching of lead. We conclude that it is feasible to utilize CRT glass in cement mortar production.  相似文献   

16.
Mine overburden removed during surface mining is considered as “waste” or “spoil” that is consuming a vast tract of land for storage. Due to high ash content (30–50%) of Indian coals, 130 million tons of fly ash per year is generated with less than 50% of it is being used. Many a time thermal power plants are close to coal mines. Hence, in the present study it is proposed that a mixture can be prepared using fly ash and coal mine overburden with or without cement, which can be used as a stabilized pavement material. The present study deals with characterization of cement stabilized mine overburden fly ash mixture as a pavement material. Mixtures with varying cement percentage of 4–7% were prepared. Based on the unconfined compressive strength and California Bearing ratio values of the stabilized mixture, it was observed that it can be used as a stabilized pavement material.  相似文献   

17.
MSW fly ash stabilized with coal ash for geotechnical application   总被引:7,自引:0,他引:7  
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.  相似文献   

18.
This paper deals with the study of corrosion level of reinforcing steel bars embedded in Portland cement mortars containing different types of fly ash. Fly ashes used were obtained by physico-chemical treatments of an original F class fly ash to modify their magnetic properties and reduce their particle size. An original fly ash (T0) and three types of modified ashes were tested according to treatment duration and magnetic properties (T60, ground fly ash; TNM, non-magnetic fraction; TM, magnetic fraction). Corrosion tests on reinforced mortar specimens with and without different types of fly ashes, cured at 40 °C, and under accelerated carbonation conditions and seawater immersion, have been performed in order to obtain conclusions on durability. From the corrosion point of view the addition of TNM in mortars showed to be much more effective than addition of the original T0 fly ash.  相似文献   

19.
李振国  刘博  吴运强  王博  郭江涛  余四文 《材料导报》2018,32(16):2733-2737
为了研究碱式硫酸镁水泥耐酸腐蚀性能,将不同配比的水泥试样分别在柠檬酸溶液及水中浸泡不同龄期,再进行质量变化测定及抗折强度和抗压强度试验。采用XRD与SEM技术分析不同配比水泥试样浸泡于两种溶液后的物相组成和显微形貌。结果表明,掺入的矿渣和粉煤灰对碱式硫酸镁水泥具有良好的密实填充作用,降低了水泥的孔隙率,有效阻止了侵蚀介质的进入,其耐酸腐蚀性能与未掺矿渣和粉煤灰的碱式硫酸镁水泥相比有明显提升,其中,掺矿渣的碱式硫酸镁水泥耐酸腐蚀性能更优。  相似文献   

20.
This study is based on the determination of optimum usage of pozzolans as supplementary cementing material for blended cement production. Blended cements were produced with natural zeolite (clinoptilolite), Eskişehir trass, Nevşehir trass, fly ash and ground granulated blast furnace slag at 10, 20, 30, 35, 40 and 45% replacement ratios. Experimental results were also obtained by building models according to artificial neural network and fuzzy logic systems. It is concluded that the strength development of cement mortars containing different pozzolans can be obtained according to neural network and fuzzy logic model test results without any experimental study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号