首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of strain rate (10−2, 10−3 and 10−4 s−1) on the low-cycle fatigue (LCF) behavior was investigated for 17-4 PH stainless steels in three different conditions at temperatures of 300–500 °C. The cyclic stress response (CSR) for Condition A tested at 300 and 400 °C showed cyclic hardening due to an influence of dynamic strain aging (DSA). An in situ precipitation-hardening effect was found to be partially responsible for the cyclic hardening in Condition A at 400 °C. For H900 and H1150 conditions tested at 300 and 400 °C, the CSR exhibited a stable stress level before a fast drop in load indicating no cyclic hardening or softening. At 500 °C, cyclic softening was observed for all given material conditions because of a thermal dislocation recovery mechanism. The cyclic softening behavior in Conditions A and H900 tested at 500 °C is attributed partially to coarsening of the Cu-rich precipitates. The LCF life for each material condition, tested at a given temperature, decreased with decreasing strain rate as a result of an enhanced DSA effect. At all given testing conditions, transgranular cracking was the common fatigue fracture mode.  相似文献   

2.
Low cycle fatigue (LCF) behaviour of a modified 9Cr–1Mo steel under normalized and tempered conditions is reported. The alloy was normalized at 1313K for 1 h followed by tempering at 1033K for 1 h, which resulted in a tempered martensitic structure. Total axial strain controlled LCF tests were conducted at a constant strain rate of 3×10−3 s−1 at different strain amplitudes varying from ±0.25 to ±1.0% in the temperature range of 300–873K. The cyclic stress response behaviour, in general, showed an initial brief hardening for the first few cycles, followed by a continuous and gradual softening regime that ended in a stress plateau that continued up to the specimen failure. The fatigue life decreased as the temperature increased. The temperature effect on life was more pronounced at low strain amplitudes. The metallography of the failed samples revealed that the fatigue failure at high amplitudes of testing was marked by extensive crack branching and the formation of secondary cracks. Oxidation was found to exert major influence on LCF life reduction at 873K.  相似文献   

3.
P. Cavaliere   《Composites Part A》2005,36(12):1657-1665
The effect of Friction Stir Processing (FSP) on the mechanical properties of 2618 aluminium alloy reinforced with 20% of alumina particles aluminium alloy has been studied in the present paper. The material was processed into the form of sheets of 7 mm thickness after T6 treatment and was tested in tension and fatigue at room temperature.

Tensile tests were also performed at higher temperatures and different strain rates in the nugget zone, in order to analyse the superplastic properties of the recrystallized material and to observe the differences with the parent materials as a function of the strong grain refinement due to the Friction Stir Process. The high temperature behaviour of the material was studied, in longitudinal direction, by means of tensile tests in the temperature and strain rate ranges of 400–500 °C and 10−3–10−1 s−1, respectively.

Fracture surfaces of the deformed fatigue test specimens were comprehensively examined in a scanning electron microscope equipped with field emission gun to determine the macroscopic fracture mode and characterize the fine-scale topography and microscopic mechanisms governing fatigue fracture.

The mechanisms governing fatigue life, cyclic deformation and fracture characteristics are analysed in function of magnitude of applied stress, intrinsic micro structural evolution and material deformation behaviour.  相似文献   


4.
In the present study, the results of the monotonic tension tests and low cycle fatigue tests performed on aluminium alloy EN AW‐2024‐T3 under various operating temperatures are presented in order to assess the fatigue behaviour of the aluminium alloy under evaluated temperatures. Monotonic tests were performed to determine the influence of temperature on mechanical properties of the material. The aim of cyclic tests was to acquire the parameters required for Manson–Coffin equation in order to plot strain–fatigue life curves. Moreover, stress–strain behaviour of the alloy and the cyclic hardening behaviour were evaluated using Ramberg–Osgood equation. Finally, PSWT‐damage parameters for each temperature have been calculated for further investigation of the effects of the temperature on fatigue life using acquired data while taking the account of mean stress effect into calculations. Variations in the experimental data due to various test temperatures are presented for both monotonic and cyclic tests.  相似文献   

5.
Fatigue experiments were conducted on polycrystalline nickel of two grain sizes, 24 and 290 μm, to evaluate the effects of grain size on cyclic plasticity and fatigue crack initiation. Specimens were cycled at room temperature at plastic strain amplitudes ranging from 2.5×10−5 to 2.5×10−3. Analyses of the cyclic stress–strain response and evolution of hysteresis loop shape indicate that the back stress component of the cyclic stress is significantly affected by grain size and plastic strain amplitude, whereas these parameters have little effect on friction stress. A nonlinear kinematic hardening framework was used to study the evolution of back stress parameters with cumulative plastic strain. These are related to substructural evolution features. In particular, long range back stress components are related to persistent slip bands. The difference in cyclic plasticity behavior between the two grain sizes is related to the effect of grain size on persistent slip band (PSB) morphology, and the effect this has on long range back stress. Fine grain specimens had a much longer fatigue life, especially at low plastic strain amplitude, as a result of the influence of grain size on fatigue crack initiation characteristics. At low plastic strain amplitude (2.5×10−4), coarse grain specimens initiated cracks where PSBs impinged on grain boundaries. Fine grain specimens formed cracks along PSBs. At high plastic strain amplitude (2.5×10−3), both grain sizes initiated cracks at grain boundaries.  相似文献   

6.
Continuum Damage Mechanics (CDM) approach is used to predict crack initiation life and Fracture Mechanics approach predicts crack growth life. Strain controlled fatigue life of a ferrous alloy, EN 19 steel, has been determined using CDM and Fracture Mechanics approach. By combining these two approaches, life could be predicted with damage value in the material. All inputs required for the models have been determined by conducting monotonic, cyclic and fracture tests. Predicted life is also compared by conducting strain controlled fatigue tests. Predicted life in the strain amplitude range of 0.3–0.7% (fatigue life range of 102–105), compares well with the experimental results. All tests have been conducted at specimen level, stress ratio of −1 and at room temperature. The variation of crack initiation and crack propagation life with strain amplitude shows that maximum life is consumed by crack growth process at higher strain amplitude and at lower strain amplitudes, maximum life is spent for crack initiation process.  相似文献   

7.
Low-cycle fatigue tests on cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650 °C and tensile tests were conducted on the cold worked and solution-treated materials. At all test temperatures, the cold worked material showed the tendency of higher strength and lower ductility. Following initial cyclic hardening for a few cycles, cyclic softening behavior was observed to dominate until failure occurred during low-cycle fatigue deformation. The softening behavior strongly depends on temperature and strain amplitude. Several life prediction models were examined and it was found that it is important to select a proper life prediction parameter since stress and strain depend strongly on temperature. A phenomenological fatigue life prediction model is proposed to account for the influence of temperature on life. The model is correlated with the experimental results.  相似文献   

8.
Gigacycle fatigue of ferrous alloys   总被引:9,自引:0,他引:9  
The objective of this paper is to determine the very long fatigue life of ferrous alloys up to 1 × 1010 cycles at an ultrasonic frequency of 20 kHz. A good agreement is found with the results from conventional tests at a frequency of 25 Hz by Renault between 105 and 107 cycles for a spheroidal graphite cast iron. The experimental results show that fatigue failure can occur over 107 cycles, and the fatigue endurance stress S max continues to decrease with increasing number of cycles to failure between 106 and 109 cycles. The evolution of the temperature of the specimen caused by the absorption of ultrasonic energy is studied. The temperature increases rapidly with increasing stress amplitudes. There is a maximum temperature between 106 and 107 cycles which may be related to the crack nucleation phase. Observations of fracture surfaces were also made by scanning electron microscopy (SEM). Subsurface cracking has been established as the initiation mechanism in ultra-high-cycle fatigue (>107 cycles). A surface–subsurface transition in crack initiation location is described for the four low-alloy high-strength steels and a SG cast iron.  相似文献   

9.
This paper summarizes the results of a comprehensive study on the cyclic strain resistance, low-cycle fatigue life and fracture behavior of three rapidly solidification processed magnesium alloys. Test specimens of the magnesium alloy were cyclically deformed under fully-reversed total strain amplitude control straining, over a range of strain amplitudes, giving less than 104 cycles to failure. The cyclic stress response characteristics, strain resistance and low-cycle fatigue life of the alloys are discussed in light of alloy composition. All three alloys follow the Basquin and Coffin-Manson strain relationships, and exhibit a single slope for the variation of cyclic elastic and cyclic plastic strain amplitude with reversals-to-fatigue failure. The cyclic stress response characteristics, fatigue life and final fracture behavior of the alloy are discussed in light of competing and synergistic influences of cyclic total strain amplitude, response stress, intrinsic microstructural effects and dislocation-microstructural feature interactions during fully-reserved strain cycling.  相似文献   

10.
The effects of the process parameters, including deformation temperature and strain rate, on the deformation behavior and microstructure of an Al–4Cu–Mg alloy, have been investigated through isothermal compression. Experiments were conducted at deformation temperatures of 540 °C, 560 °C, and 580 °C, strain rates of 1 s−1, 1×10−1 s−1, 1×10−2 s−1, and 1×10−3 s−1, and height reductions of 20%, 40%, and 60%. The experimental results show that deformation temperature and strain rate have significant effect on the peak flow stress. The flow stress decreases with an increase of deformation temperature and/or a decrease of the strain rate. Above a critical value of the deformation temperature, the flow stress quickly reaches a steady value. Experimental materials A and B have equiaxed and irregular grains, respectively, prior to deformation. The microstructures vary with the process parameters in the semi-solid state. For material B, the irregular grains transform to equiaxed grains in the process of semi-solid deformation, which improves the deformation behavior.  相似文献   

11.
Steel conforming to BS970:976M33 has been fatigue tested in notched form in air and in synthetic sea water, both freely corroding and cathodically protected at −1050 mV with respect to the saturated Ag/AgCl reference electrode. The cyclic and mean stresses were varied to study the effects of changes in the stress ratio, Rminmax), from 0.05 to 0.75, on the fatigue life response. Compared with the fatigue performance obtained in air at R=0.05 free corrosion lowered the fatigue strength at 106 cycles to failure from 430 MPa to 135 MPa and cathodic protection changed it to 270 MPa. In each condition changes in R from 0.05 to 0.5 lowered the fatigue strength in the short life range by approximately 50% but had a much smaller effect, of approximately 10%, at a fatigue life of 106 cycles.  相似文献   

12.
Abstract—High temperature low cycle fatigue tests, with and without strain dwells, were conducted at 750°C, 950°C and 1050°C, on single crystal SRR99 nickel base superalloy, with different crystal orientations. At 750°C, SSR99 exhibited cyclic stability regardless of cycle type. The presence of strain dwells caused cyclic softening at 950°C compared with continuous cycling tests. At 1050°C, cyclic softening was observed for all the tests. The introduction of strain dwells produced significant stress relaxation at 950°C and 1050°C, but not at 750°C for the strain ranges in this study. Significant mean stress was observed at the three temperatures for tests with tensile or compressive strain dwells. The crystal orientation was found to have a dominating influence on the cyclic stress strain relationship and stress relaxation response. A simple approach is developed to correlate the effect of orientation on the cyclic mechanical response.  相似文献   

13.
Recent fatigue studies of Sn-rich Pb-free solder alloys are reviewed to provide an overview of the current understanding of cyclic deformation, cyclic softening, fatigue crack initiation, fatigue crack growth, and fatigue life behavior in these alloys. Because of their low melting temperatures, these alloys demonstrated extensive cyclic creep deformation at room temperature. Limited amount of data have shown that the cyclic creep rate is strongly dependent on stress amplitude, peak stress, stress ratio and cyclic frequency. At constant cyclic strain amplitudes, most Sn-rich alloys exhibit cycle-dependent and cyclic softening. The softening is more pronounced at larger strain amplitudes and higher temperatures, and in fine grain structures. Characteristic of these alloys, fatigue cracks tend to initiate at grain and phase boundaries very early in the fatigue life, involving considerable amount of grain boundary cavitation and sliding. The growth of fatigue cracks in these alloys may follow both transgranular and intergranular paths, depending on the stress ratio and frequency of the cyclic loading. At low stress ratios and high frequencies, fatigue crack growth rate correlates well with the range of stress intensities or J-integrals but the time-dependent C* integral provides a better correlation with the crack velocity at high stress ratios and low frequencies. The fatigue life of the alloys is a strong function of the strain amplitude, cyclic frequency, temperature, and microstructure. While a few sets of fatigue life data are available, these data, when analyzed in terms of the Coffin–Mason equation, showed large variations, with the fatigue ductility exponent ranging from −0.43 to −1.14 and the fatigue ductility from 0.04 to 20.9. Several approaches have been suggested to explain the differences in the fatigue life behavior, including revision of the Coffin–Mason analysis and use of alternative fatigue life models.  相似文献   

14.
A 1Cr-Mo-V turbine rotor steel forging, heat treated to obtain a bainite-20% ferrite microstructure, has been investigated for low cycle fatigue behaviour at room temperature and 535°C. In addition to establishing life expectancy curves, cyclic stress response and cyclic stress/strain curves were derived and the influence of time-dependent effects on high temperature low cycle fatigue life was also determined by introducing varying hold times at the peak tensile strain level of the fatigue cycle. The life expectancy curve obtained is comparable to that reported for the bainitic structure in this steel. Introduction of a dwell period of 5 min is found to reduce the low cycle fatigue life by a factor of 1.6.  相似文献   

15.
The low cycle fatigue tests of Ni-base superalloy Hastelloy X have been carried out in the temperature range of 650 - 870 °C with various total strain ranges. A change of slope in the Coffin-Manson (C-M) plot was found at 870 °C: the fatigue life significantly decreased at the total strain range less than 0.6%. The fatigue cracks initiated at the surface of the specimens and propagated transgranularly, regardless of test condition. However, the fatigue crack initiation site on the surface shifted from grain interior to grain boundary (GB) predominantly when the discontinuity of slope in the C-M plot began to occur. The fatigue crack tended to initiate preferentially at the oxidized GB rather than grain interior at 870 °C with total strain range below 0.6%. Under this condition, cyclic stability was pronounced, while cyclic hardening occurred at the rest of test conditions. The dislocation structures responsible for the cyclic stress response may partly account for the determination of major fatigue crack initiation site.  相似文献   

16.
Abstract—Experimental and theoretical investigations on the influence of temperature, strain dwells and crystal orientation on the high temperature fatigue-creep life behaviour of single crystal SRR99 nickel base superalloy were performed. For a given temperature and loading condition, the longest fatigue life was observed for tests with [001] orientations, while the [111] orientation yielded the shortest fatigue life. A simple approach, using an orientation function f ( A hkI), was applied successfully to correlate the influence of orientation. Using this function, the shortest fatigue life was observed for tests with a compressive dwell at 750°C, but at 1050°C tests with a tensile dwell exhibited the shortest life. Compared with continuous cycling tests, tests with tensile dwells showed remarkably longer lives at 750°C, significantly shorter lives at 1050°C, and almost identical lives at 950°C; tests with compressive dwells always exhibited shorter lives than continuous cycling tests at all temperatures. The influence of strain dwells on the life of SRR99 was via the simultaneous effects of mean stress, additional inelastic strain, and time dependent damage. A mean stress modified strain range partitioning method was proposed and used to predict the fatigue-creep life.  相似文献   

17.
Specimens of ultra-high molecular weight polyethylene have been subjected to flexural fatigue tests at −40° and 23°C, and the temperature of some of the specimens recorded throughout the test. It is found that when the specimen life exceeds 106 cycles, the temperature of the specimen stabilizes. However, if the temperature of the specimen does not reach equilibrium with the testing temperature, the specimen life is short (< 104 cycles). The stabilization of the speciment temperature is related to a critical stress level, which is different for each testing temperature.  相似文献   

18.
19.
MEAN STRESS EFFECTS ON LOW CYCLE FATIGUE FOR A HIGH STRENGTH STEEL   总被引:6,自引:0,他引:6  
Abstract— ASTM A723 Q & T steel with a yield strength and ultimate strength of 1170 and 1262 MPa respectively was evaluated for mean stress-strain effects under smooth specimen axial strain controlled low cycle fatigue conditions with strain ratios R of −2, −1, 0, 0.5 and 0.75. Cycles to failure ranged from 15 to 105. Cyclic stress-strain response based upon half-life hysteresis loop peaks were similar for all R ratios. Mean stress relaxation occurred for R ≠−1 only when plastic strain amplitudes were present and this occurred above total strain amplitudes of 0.005. Thus, mean stress relaxation was completely dependent upon cyclic plasticity. Mean strains did not affect low cycle fatigue life unless accompanied by half-life mean stress. Tensile mean stress was detrimental and compressive mean stress was beneficial and these effects only occurred at strain ampltidues below 0.005. Three different mean stress models were used to evaluate the low cycle fatigue data and the SWT log-log linear model best represented the data. These results can be used with the local notch strain fatigue life prediction methodology.  相似文献   

20.
Abstract— Biaxial fatigue tests were conducted on a high strength spring steel using hour-glass shaped smooth specimens. Four types of loading system were employed, i.e. (a) fully reversed cyclic torsion, (b) uniaxial push—pull, (c) fully reversed torsion with a superimposed axial static tension or compression stress, and (d) uniaxial push—pull with a superimposed static torque, to evaluate the effects of mean stress on the cyclic stress—strain response and short fatigue crack growth behaviour. Experimental results indicate that a biaxial mean stress has no apparent influence on the stress—strain response in torsion, however a superimposed tensile mean stress was detrimental to torsional fatigue strength. Similarly a superimposed static shear stress reduced the push—pull fatigue lifetime. A compressive mean stress was seen to be beneficial to torsion fatigue life. The role of mean stress on fatigue lifetime, under mixed mode loading, was investigated through experimental observations and theoretical analyses of short crack initiation and propagation. Using a plastic replication technique the effects of biaxial mean stress on both Stage I (mode II) and Stage II (mode I) short cracks were evaluated and analysed in detail. A two stage biaxial short fatigue crack growth model incorporating the influence of mean stress was subsequently developed and applied to correlate data of crack growth rate and fatigue life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号