首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用Alcalase 2.4L碱性内切蛋白酶对火麻仁进行酶解提取火麻仁油.在单因素实验基础上,应用响应面法对火麻仁油水酶法提取条件进行了优化.结果表明,最佳提取条件为:加酶量7 100 U/g,酶解温度61℃,酶解时间3.7h,料液比1∶3.8,酶解pH 8.在此条件下,火麻仁油提取率为93.82%.所得火麻仁油呈淡黄色,澄清透明,具有火麻仁特有的香味.  相似文献   

2.
响应面法优化碱性蛋白酶提取榛子油工艺   总被引:1,自引:0,他引:1  
采用Alcalase碱性蛋白酶水酶法提取榛子油,以提油率为指标,对影响提油率的各个因素进行了研究,并用响应面法优化了提油工艺.F检验可以得到因素影响大小顺序为:酶解时间>加酶量>料液比>酶解温度>酶解pH.得到优化酶解条件为:加酶量1.6%,酶解温度51℃,酶解时间1.9h,料液比1∶5.6,酶解pH 10.在优化酶解条件下,榛子提油率可达92.92%.同时测得榛子油的棕榈酸含量4.33%,油酸67.10%,亚油酸0.09%,亚麻酸0.09%,硬脂酸1.165%.  相似文献   

3.
火麻仁是我国中医用的药材和保健食品原料之一,主要对水酶法提取火麻仁油工艺参数进行优化,在单因素试验的基础上,采用响应面分析法对甘露聚糖酶和胰酶用量及酶解时间进行优化并得到回归模型。确定水酶法提取火麻仁油最佳工艺为:甘露聚糖酶用量1 900 U/g,酶解温度70℃,pH为8,酶解时间1.7h,再加入500 U/g胰酶,pH为8,40℃条件下酶解2 h,火麻仁油的提取率为62.49%。利用此工艺参数进行放大试验,结果与预测值相近,回归模型可靠。  相似文献   

4.
采用超声波辅助溶剂提取法提取火麻仁油,在单因素实验的基础上,运用Box-Behnken中心组合实验设计原理进行实验设计,建立料液比、超声时间、超声温度与火麻仁油得率之间的数学模型,通过对该模型的响应面分析,得出超声波提取火麻仁油的最佳条件为:料液比1:17(g/mL)、超声时间27min、超声温度20℃,在此条件下,火麻仁油得率为33.34%。   相似文献   

5.
邓仕任  夏林波  郭莹 《食品工业科技》2012,33(5):243-245,249
采用超声波辅助溶剂提取法提取火麻仁油,在单因素实验的基础上,运用Box-Behnken中心组合实验设计原理进行实验设计,建立料液比、超声时间、超声温度与火麻仁油得率之间的数学模型,通过对该模型的响应面分析,得出超声波提取火麻仁油的最佳条件为:料液比1:17(g/mL)、超声时间27min、超声温度20℃,在此条件下,火麻仁油得率为33.34%。  相似文献   

6.
响应面法优化火麻仁油冷榨提取工艺   总被引:2,自引:0,他引:2  
目的:得到高品质、纯天然火麻仁油及保留饼粕中蛋白质的天然生物活性。方法:采用冷榨法提取火麻仁油,在单因素试验基础上,采用响应面法对提取工艺参数进行优化。建立入榨水分含量、入榨温度、压榨压力、压榨时间与火麻仁油提取率之间的数学模型。采用气相色谱法测定、面积归一化法分析所提取火麻仁油脂肪酸组成及含量。结果:通过典型性分析得出最优工艺条件为入榨水分含量4.5%、入榨温度59℃、压榨压力40MPa、压榨时间36min,在此最佳工艺条件下火麻仁油提取率可达82.74%。脂肪酸测定表明火麻仁冷榨油富含亚油酸、亚麻酸、油酸、花生四烯酸等不饱和脂肪酸,其总含量高达89.80%。结论:将响应面分析法应用于冷榨提取火麻仁油工艺条件优化,获得良好效果。火麻仁冷榨油不饱和脂肪酸含量高,是一种具有高营养保健价值的功能性油脂。  相似文献   

7.
响应面法优化火麻仁黄酮提取工艺   总被引:3,自引:0,他引:3  
赵翾  李红良  张惠妹 《食品科学》2011,32(2):127-131
对火麻仁黄酮的提取工艺进行研究。通过单因素试验分别考察提取溶剂、乙醇体积分数、浸提时间、浸提温度、液料比和粉碎度对火麻仁黄酮提取量的影响,确定各因素的适宜水平。在此基础上,利用Design-Expert软件中心组合设计法设计响应面试验,并通过方差分析回归建立数学模型,得到火麻仁黄酮的最佳提取工艺条件为乙醇体积分数70%、提取温度75℃、提取时间2.5h、液料比35:1(mL/g),在此条件下,黄酮提取量为17.80mg/g。  相似文献   

8.
响应面法优化甜杏仁油提取工艺   总被引:1,自引:0,他引:1  
以辽西地区大扁杏为原料,利用酶法提取杏仁油。选取料液比、酶用量及酶解时间3个因素,采用响应面实验设计,优化分离杏仁油的工艺条件。结果表明,最佳工艺参数为:料液比为1:5.3,碱性蛋白酶1.1%,中性蛋白酶0.9%,酶解时间132min(碱性蛋白酶和中性蛋白酶分别为66min)。在此工艺条件下,杏仁油提取率为39.88%,说明响应面法优化杏仁油提取工艺参数效果较好。  相似文献   

9.
以辽西地区大扁杏为原料,利用酶法提取杏仁油。选取料液比、酶用量及酶解时间3个因素,采用响应面实验设计,优化分离杏仁油的工艺条件。结果表明,最佳工艺参数为:料液比为1:5.3,碱性蛋白酶1.1%,中性蛋白酶0.9%,酶解时间132min(碱性蛋白酶和中性蛋白酶分别为66min)。在此工艺条件下,杏仁油提取率为39.88%,说明响应面法优化杏仁油提取工艺参数效果较好。   相似文献   

10.
用Alcalase碱性蛋白酶对松子仁进行水解,提取松子油,试验以总油提取率为指标,采用单因素试验对酶解温度,加酶量,料液比,酶解pH和酶解时间5个影响因素进行了研究,并用响应面法进行了优化。上述影响因素中,酶解温度为主要的影响因素,其他依次为加酶量,料液比,酶解pH,酶解时间。本试验优化后得到的最佳酶解条件为:加酶量1.97%,温度51℃,时间3.0 h,料水比1∶5,pH 8.4,松子总油提取率可达89.12%。测定松子油的5种脂肪酸的质量分数分别为,棕榈酸3.89%,硬脂酸1.53%,油酸19.44%,亚油酸50.09%,亚麻酸0.58%。  相似文献   

11.
响应面法优化水酶法提取薏米糠油工艺研究   总被引:1,自引:0,他引:1  
以薏米糠为研究对象,采用响应面法对水酶法提取薏米糠油工艺条件进行优化,通过回归方程模型得出最佳工艺条件为:料液比1∶6,酶解p H 6,酶解温度50℃,酶解时间3 h,酶用量0.8%(α-淀粉酶0.8%+中性蛋白酶0.8%)。经3次平行验证性试验,薏米糠游离油得率均值为76.61%。测得薏米糠游离油含有9种脂肪酸,不饱和脂肪酸含量达85%以上。  相似文献   

12.
响应面法优化牡丹籽油的水酶法提取工艺   总被引:1,自引:0,他引:1  
采用水酶法提取牡丹籽油,在单因素实验的基础上,应用响应面法中的Box-Behnken设计对牡丹籽油的水酶法提取工艺进行优化,并通过气相色谱-质谱联用仪对牡丹籽油的脂肪酸组成进行分析。结果表明:料液比1∶5.4、酶解温度52℃、酶解pH 10.3、加酶量550 U/g为较优工艺参数,该条件下牡丹籽出油率为23.25%。牡丹籽油主要含亚麻酸、亚油酸、棕榈酸、硬脂酸4种脂肪酸,其相对含量分别为58.16%、24.05%、12.33%和3.56%。  相似文献   

13.
杨端 《中国油脂》2020,45(7):31-34
以奇亚籽为原料,采用水酶法提取奇亚籽油。在单因素实验的基础上,采用响应面法对水酶法提取奇亚籽油的工艺条件进行优化。结果表明,水酶法提取奇亚籽油的最佳工艺条件为:碱性蛋白酶作为酶解用酶,酶解温度45℃,液料比8. 47∶1,pH 10,酶添加量5. 17%,酶解时间2. 16 h。在最佳条件下,奇亚籽油提取率为89. 53%。  相似文献   

14.
响应面法优化酶法提取麻疯树籽油工艺研究   总被引:1,自引:0,他引:1  
该文报道酶法提取麻疯树籽油工艺,在单因素试验基础上,利用Box–Benhnken中心组合试验和响应面分析法(RSM),对影响麻疯树籽出油率关键因素进行优化探讨。结果表明,纤维素酶具有较好酶解能力,最佳工艺条件为:加酶量2.1%、酶解温度43℃、料液比1∶5(g/mL)、酶解时间3 h,麻疯树籽油得率可达80.71%,较无酶条件下得率提高20%。  相似文献   

15.
以裂壶藻干藻粉为原料,以清油得率为评价指标,采用两步酶解法提取油脂。在单因素实验的基础上,对清油得率影响较大的碱性蛋白酶的作用条件应用响应面法进行优化,依据回归分析确定碱性蛋白酶的最适作用条件。结果表明,水酶法提取裂壶藻油的最适工艺条件为:料液比1∶7,中性蛋白酶添加量7%,酶解温度45℃,酶解时间3 h,酶解p H 6.5;碱性蛋白酶添加量10%,酶解温度68℃,酶解时间6 h,酶解p H 9.4。在最适工艺条件下,裂壶藻清油得率可以达到(91.37±0.14)%。气相色谱-质谱分析裂壶藻油中不饱和脂肪酸含量为47.43%,其中DHA含量为35.09%。  相似文献   

16.
《粮食与油脂》2017,(10):30-32
为充分利用猫屎瓜特色资源,用响应面分析法优化水酶法提取猫屎瓜籽油的提取工艺。在单因素试验基础上,选取胰酶量、提取时间和提取温度进行了Box-Behnken中心组合试验。试验结果表明,曲面回归方程拟合性良好,在胰酶量1.2 g、提取时间4 h、提取温度49℃的条件下,验证优化工艺得到猫屎瓜籽油提取率为18.42%,与预测值18.06%相近。  相似文献   

17.
以鳄鱼油提取率为评价指标,利用单因素实验和响应面法对酶法提取鳄鱼油工艺进行优化,并对鳄鱼油的理化性质和脂肪酸组成进行分析。结果表明:最佳酶法提取鳄鱼油工艺条件为中性蛋白酶添加量0. 3%、提取时间3 h、料液比1∶0. 45、提取温度54℃,在此条件下鳄鱼油提取率达到87. 42%;鳄鱼油质量达到SC/T 3502—2016一级粗鱼油的标准;鳄鱼油中共检出32种脂肪酸,其中饱和脂肪酸含量为40. 96%,不饱和脂肪酸含量为58. 57%,EPA与DHA总量为2. 42%。  相似文献   

18.
通过单因素实验考察中性蛋白酶、木瓜蛋白酶、胃蛋白酶、胰蛋白酶和风味蛋白酶对大鲵油提取率的影响,确定木瓜蛋白酶为实验用酶;采用中心组合实验(CCD)对酶解工艺进行优化,确定酶解的最适工艺条件为:料液比为1∶1(w/w),酶添加量为6800 U/g,p H5.8,酶解温度为50℃,酶解时间为130 min,在优化条件下大鲵油提取率为93.52%。对水酶法提取的大鲵油进行理化、感官分析,结果表明粗制大鲵油产品质量达到SC/T3502-2000二级粗鱼油指标要求。   相似文献   

19.
响应面法优化水酶法提取核桃油的工艺条件   总被引:3,自引:0,他引:3  
研究中性蛋白酶、碱性蛋白酶、纤维素酶、果胶酶、木瓜蛋白酶单独使用和复合使用对核桃油提取率的影响,采用单因素试验及响应面法对水酶法提取核桃油的工艺条件进行优化.结果表明,水酶法提取核桃油的最优工艺条件为料液比1:5(m:v)、酶解pH 7.5、酶添加量1.55%、酶解温度45.41 ℃、酶解时间2.17 h;复合酶采用果胶酶+纤维素酶+中性蛋白酶(1:1:1),对核桃提油率的工艺条件进行优化,核桃提油率可达54.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号