首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Orange juice was treated with pulsed electric fields (PEF) in a pilot‐plant system to optimize PEF‐processing conditions for maximum microbial inactivation and to investigate the effects of PEF on pectin methyl esterase (PME) activity. Electric‐field strengths of 20,25,30, and 35 kV/cm and total treatment times of 39, 49, and 59 μs were used. Higher electric‐field strengths and longer total treatment times were more effective to inactivate microorganisms and PME (p < 0.05). PEF treatment of orange juice at 35 kV/cm for 59 μs caused 7–log reductions in total aerobic plate count and yeast and mold counts. About 90% of PME activity was inactivated by PEF treatment at 35 kV/cm for 59 μs. PEF‐treated orange juice at 35 kV/cm for 59 ms did not allow growth of microorganisms and recovery of PME at 4, 22, and 37 °C for 112 d.  相似文献   

2.
ABSTRACT: Inactivation of 4 microorganisms in orange juice was investigated in a 100 L/h flowing pulsed electric field (PEF) system. Electric field levels of 30 kV/cm and 50 kV/cm were applied, and Leuconostoc mesenteroides, E. coli , and Listeria innocua were inactivated by as much as 5 log cycles at 30 kV/cm and 50 °C. Saccharomyces cerevisiae ascospores were the least susceptible to PEF at all treatment levels, and a maximum of 2.5 log reduction was achieved at 50 kV/cm and 50 °C. Both electric field levels were effective in inactivating microorganisms at temperatures below standard thermal treatment, however, the number of pulses applied was particularly important in inactivation.  相似文献   

3.
S. Min    S.K. Min    Q.H. Zhang 《Journal of food science》2003,68(6):1995-2001
ABSTRACT: Pulsed electric field (PEF) inactivation models for tomato juice lipoxygenase (LOX) were studied. Tomato juice was treated by PEF with the combinations of electric field strength (0, 10, 15, 20, 30, 35 kV/cm), PEF treatment time (20, 30, 50, 60, 70 μs), and PEF treatment temperature (10, 20, 30, 40, 50 °C). The first-order inactivation models, Hulsheger's model, Fermi's model, and the 2nd-order polynomial equation adequately described the LOX inactivation. Calculated D values were 161.0, 112.9, 101.0, and 74.8 μs at 15, 20, 30, and 35 kV/cm, respectively, at 30 °C. The activation energy for the inactivation of LOX by PEF was 35.7 kJ/mol. Applied electric field strength was the primary variable for the inactivation of LOX.  相似文献   

4.
Pulsed electric fields (PEF) were applied to freshly prepared grapefruit juice using a laboratory scale continuous PEF system to study the feasibility of inactivating pectin methyl esterase (PME). Square wave PEF using different combinations of pre-treatment temperature, electric field strength and treatment time were evaluated in this study. Inactivation curves for the enzyme were plotted for each parameter and inactivation kinetics were calculated. Results showed that the highest level of inactivation (96.8%) was obtained using a combination of preheating to 50 °C, and a PEF treatment time of 100 μs at 40 kV/cm. Inactivation of grapefruit PME activity could be described using an exponential decay model. Calculated D-values following a 50 °C preheat were 77.5, 76.0 and 70.4 μs at 20, 30 and 40 kV/cm, respectively. The activation energy for the inactivation of PME by PEF was 36.2 kJ/mol.  相似文献   

5.
ABSTRACT: Heat pasteurization may detrimentally affect the quality of fruit and vegetable juices; hence, nonthermal pasteurization methods are actively being developed. Radio frequency electric fields processing has recently been shown to inactivate yeast in water at near-ambient temperatures. The objective of this study was to extend the radio frequency electric fields (RFEF) technique to inactivate bacteria in apple juice. A converged-field treatment chamber was developed that enabled high-intensity RFEF to be applied to apple juice using a 4-kW power supply. Finite element analyses indicated that uniform fields were generated in the treatment chamber. Escherichia coli K12 in apple juice was exposed for 0.17 ms to electric field strengths of up to 26 kV/cm peak over a frequency range of 15 to 70 kHz. The population of E. coli was reduced by 1.8 log following exposure to an 18 kV/cm field at an outlet temperature of 50 °C. Raising the temperature increased inactivation. Intensifying the electric field up to 16 kV/cm increased inactivation; however, above this intensity, inactivation remained constant. Radio frequencies of 15 and 20 kHz inactivated E. coli better than frequencies of 30 to 70 kHz. Inactivation was independent of the initial microbial concentration between 4.3 and 6.2 log colony-forming units (CFU)/mL. Applying 3 treatment stages at 50 °C increased inactivation to 3 log. The electric energy for the RFEF process was 300 J/mL. The results of the present study provide the 1st evidence that RFEF processing inactivates bacteria in fruit juice at moderately low temperatures.  相似文献   

6.
The effects of pulsed electric fields (PEFs) on pectin methyl esterase (PME), molds and yeast, and total flora in fresh (nonpasteurized) mixed orange and carrot juice were studied. The PEF effect was more extensive when juices with high levels of initial PME activity were subjected to treatment and when PEF treatment (at 25 kV/cm for 340 micros) was combined with a moderate temperature (63 degrees C), with the maximum level of PME inactivation being 81.4%. These conditions produced 3.7 decimal reductions in molds and yeast and 2.4 decimal reductions in total flora. Experimental inactivation data for PME, molds and yeast, and total flora were fitted to Bigelow, Hülsheger, and Weibull inactivation models by nonlinear regression. The best fit (lowest mean square error) was obtained with the Weibull model.  相似文献   

7.
ABSTRACT: Using the hurdle approach, temperature, acidity, and number of pulses were varied to maximize microbial inactivation in orange juice. The effect of PEF combined with the addition of nisin, lysozyme, or a combination of both to orange juice was also investigated. Optimal conditions consisting of 20 pulses of an electric field of 80 kV/ cm, at pH 3.5, and a temperature of 44 °C with 100 U nisin/ml resulted in over a 6-log cycle reduction in the microbial population. The process was most influenced by a change in temperature (p < 0.0001). Following treatment, there was a 97.5% retention of vitamin C, along with a 92.7% reduction in pectinmethylesterase activity. The microbial shelf-life of the orange juice was also improved and determined to be at least 28 d when stored at 4 °C without aseptic packaging. Gas chromatography revealed no significant differences in aroma compounds before and after pulsing.  相似文献   

8.
Inactivation of soybean lipoxygenase in soymilk by pulsed electric fields   总被引:1,自引:0,他引:1  
The inactivation of soybean lipoxygenase by pulsed electric fields (PEF) was studied. Effects of PEF parameters (treatment time, pulse strength, pulse frequency and pulse width) were evaluated. Soymilk was exposed to pulsed strengths from 20 to 42 kV/cm for up to 1036 μs treatment time in square wave pulse of bipolar mode. Moreover, pulse frequency (100–600 Hz) and pulse width (1–5 μs) was also tested at constant pulsed treatment time of 345 μs and strength of 30 kV/cm. Residual activity of soybean lipoxygenase decreased with the increase of treatment time, pulse strength, pulse frequency and pulse width. The maximum inactivation of soybean lipoxygenase by PEF achieved 88% at 42 kV/cm for 1036 μs with 400 Hz of pulse frequency and 2 μs of pulse width at 25 °C. Inactivation of soybean lipoxygenase by pulsed electric fields was modeled using several kinetic models. Weibull distribution function was most suitable model describing the inactivation of soybean LOX as a function of pulsed electric fields process parameters. Moreover, reduction of soybean LOX activity related to the electric field strength could be well described by the Fermi model.  相似文献   

9.
高压脉冲电场对蓝莓汁杀菌效果及品质的影响   总被引:2,自引:1,他引:2  
研究了高压脉冲电场(PEF)对蓝莓汁的杀菌效果及其对蓝莓汁理化性质的影响。结果显示:随电场强度、处理时间的增大,PEF对蓝莓汁中大肠杆菌的杀灭效果增强。当电场强度为35 kV/cm,处理时间为82μs时,蓝莓汁中大肠杆菌致死率为5.12个对数。电场强度一定时,电导率增大,PEF对大肠杆菌的钝化效果略微下降。PEF对蓝莓汁VC、花青素、总酚、可滴定酸、还原糖、可溶性固形物及色泽等理化性质没有影响。  相似文献   

10.
Commercial-Scale Pulsed Electric Field Processing of Orange Juice   总被引:9,自引:0,他引:9  
S. Min    Z.T. Jin    S.K. Min    H. Yeom    Q.H. Zhang 《Journal of food science》2003,68(4):1265-1271
Effects of commercial‐scale pulsed electric field (PEF) processing on the microbial stability, ascorbic acid, flavor compounds, color, Brix, pH, and sensory properties of orange juice were studied and compared with those of thermal processing. Freshly squeezed orange juice was thermally processed at 90 °C for 90 s or processed by PEF at 40 kV/cm for 97 ms. Both thermally processed and PEF‐processed juices showed microbial shelf life at 4 °C for 196 d. PEF‐processed juice retained more ascorbic acid, flavor, and color than thermally processed juice (P<0.05). Sensory evaluation of texture, flavor, and overall acceptability were ranked highest for control juice, followed by PEF‐processed juice and then by thermally processed juice (P<0.01).  相似文献   

11.
Does Electroporation Occur During the Ohmic Heating of Food?   总被引:1,自引:0,他引:1  
ABSTRACT: The effect of temperature on electroporation of plant tissues during the pulsed electric field (PEF) or alternative current (AC) treatment was studied. The characteristic damage time t, which determines effectiveness of the electroporation mechanism in plant tissue damage, was estimated for potatoes tissues in the range of electric field strengths E = 40 to 500 V/cm and at temperatures T = 22°C and T = 49 °C in PEF treatment experiments. Experimental results of the AC ohmic heating of potato and apple tissues are evidence of the importance of the electroporation mechanism of tissue damage at moderate electric fields (MEF), when the electric field strength E is under 100 V/cm, and show that effectiveness of this mechanism increases with temperature increase.  相似文献   

12.
Cranberry juice was treated either by high voltage pulsed electric field (PEF) at 20 kV/cm and 40 kV/cm for 50 and 150°s, or by thermal treatment at 90C for 90s. Higher field strength and longer treatment time reduced more viable microbial cells. the overall volatile profile of the juice was not affected by PEF treatment but it was affected by thermal treatment. No Significant difference in color was observed between the control and PEF treated samples. the application of 40kV/cm for 150 1ts resulted in no growth of molds and yeasts during storage at 22 and 4C, and no growth of aerobic bacteria during storage at 4C. PEF is an alternative process to thermal pasteurization for cranberry juice.  相似文献   

13.
The non-thermal process of radio frequency electric fields (RFEF) has been shown to inactivate bacteria in apple juice at moderately low temperatures, but has yet to be extended to inactivate bacteria in orange juice. An 80 kW RFEF pasteurizer was used to process pulp-free orange juice at flow rates of 1.0 and 1.4 l/min. Escherichia coli K12 in orange juice was exposed to electric field strengths of 15 and 20 kV/cm at frequencies of 21, 30, and 40 kHz. Ascorbic acid (Vitamin C) content and color of the juice before and after treatment were analyzed. Electrical energy costs were calculated using the measured voltage and current. An energy balance was performed using the inlet and outlet temperatures. Processing at an outlet temperature of 65 °C reduced the population of E. coli by 3.3 log relative to the control. Increasing the treatment time and temperature and decreasing the frequency enhanced the level of inactivation. Varying the electric field strength over the range of conditions used had no effect on the inactivation. No loss in ascorbic acid or enzymatic browning was observed due to RFEF processing. The electrical energy determined using the voltage and current was 180 J/ml. This was in good agreement with the energy calculated using the temperature data. The electrical cost was $0.0026/l of orange juice. The results provided the first evidence that the RFEF process inactivates bacteria in orange juice at moderately low temperatures.

Industrial relevance

The RFEF process has been shown to inactivate E. coli in apple juice at moderately low temperatures, but has yet to be extended to inactivate bacteria in orange juice. An RFEF pilot plant pasteurizer was used to process orange juice at rates of up to 1.4 l/min. RFEF processing reduced the population of E. coli by 99.3% at 60 °C and a hold time of 3 s, whereas conventional heating at the same conditions had no effect on the E. coli. This work demonstrated that the non-thermal RFEF process can be extended to inactivate bacteria in orange juice.  相似文献   

14.
The inactivation of orange juice peroxidase (POD) under high‐intensity pulsed electric fields (HIPEF) was studied. The effects of HIPEF parameters (electric field strength, treatment time, pulse polarity, frequency and pulse width) were evaluated and compared with conventional heat pasteurization. Samples were exposed to electric field strengths from 5 to 35 kV cm?1 for up to 1500 µs using square wave pulses in mono‐ and bipolar mode. Effect of pulse frequency (50–450 Hz), pulse width (1–10 µs) and electric energy on POD inactivation by HIPEF were also studied. Temperature was always below 40 °C. POD was totally inactivated by HIPEF and the treatment was more effective than thermal processing in inactivating orange juice POD. The extent of POD inactivation depended on HIPEF processing parameters. Orange juice POD inhibition was greater when the electric field strength, the treatment time, the pulse frequency and the pulse width increased. Monopolar pulses were more effective than bipolar pulses. Orange juice POD activity decreased with electric energy density input. The Weibull distribution function adequately described orange juice POD inactivation as a function of the majority of HIPEF parameters. Moreover, reduction of POD activity related to the electric field strength could be well described by the Fermi model. Copyright © 2005 Society of Chemical Industry  相似文献   

15.
ABSTRACT: Apple juice inoculated with Escherichia coli ATCC 23472 was processed continuously using either ultraviolet (UV), high‐voltage pulsed electric field (PEF), or a combination of the PEF and UV treatment systems. Apple juice was pumped through either of the systems at 3 flow rates (8, 14, and 20 mL/min). E. coli was reduced by 3.46 log CFU/mL when exposed in a 50 cm length of UV treatment chamber at 8 mL/min (2.94 s treatment time with a product temperature increase of 13 °C). E. coli inactivation of 4.87 log CFU/mL was achieved with a peak electric field strength of 60 kV/cm and 11.3 pulses (average pulse width of 3.5 μs, product temperature increased to 52 °C). E. coli reductions resulting from a combination treatment of UV and PEF applied sequentially were evaluated. A maximum E. coli reduction of 5.35 log CFU/mL was achieved using PEF (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) and UV treatments (length of 50 cm, treatment time of 2.94 s, and flow rate of 8 mL/min). An additive effect was observed for the combination treatments (PEF and UV), regardless of the order of treatment (P > 0.05). E. coli reductions of 5.35 and 5.30 log CFU/mL with PEF treatment (electrical field strength of 60 kV/cm, specific energy of 162 J/mL, and 11.3 pulses) followed by UV (length of 30 cm, treatment time of 1.8 s, and flow rate of 8 mL/min) and UV treatment followed by PEF (same treatment conditions), respectively. No synergistic effect was observed.  相似文献   

16.
Apple juice was pasteurized by an ultra-high temperature treatment (UHT) at 115, 125 and 135C for 3 and 5 s, and compared with a high-voltage pulsed electric field treatment (PEF) at ranges between 33 and 42 kV/cm with frequencies of 150, 200, 250 and 300 pulses per second (pps). Enzyme inactivation and physicochemical properties of the treated juices were compared using a nontreated sample as control. The UHT treatment was more efficient in enzyme inactivation, reducing 95% the residual activity of polyphenoloxidase at the maximum temperature and time. However, a PEF treatment at 38.5 kV/cm and 300 pps combined with a temperature of 50C achieved a 70% reduction of residual PFO activity. In terms of quality characteristics as a function of physicochemical properties, color, pH, acidity and soluble solids were all less affected by PEF than by UHT when compared with the untreated juice.

PRACTICAL APPLICATIONS


Apple juice is a popular beverage worldwide and it is consumed nearly as much as orange juice. Consumers prefer fresh-squeezed fruit juices with high nutrient value and fresh-like sensory attributes. Enzymatic browning negatively impacts appearance, nutritive value and flavor of fruit juices. The use of ultra-high temperature processing is efficient in microbial control, as well as in enzyme inactivation. Any thermal processing may, however, decrease the overall quality of the treated juices. Pulsed electric field processing provides a potential alternative to thermal pasteurization of fruit juices.  相似文献   

17.
The effect of high voltage pulsed electric field (PEF) treatment on Escherichia coli O157:H7 and generic E. coli 8739 in apple juice was investigated. Fresh apple juice samples inoculated with E. coli O157:H7 and E. coli 8739 were treated by PEF with selected parameters including electric field strength, treatment time, and treatment temperature. Samples were exposed to bipolar pulses with electric field strengths of 30, 26, 22, and 18 kV/cm and total treatment times of 172, 144, 115, and 86 micros. A 5-log reduction in both cultures was determined by a standard nonselective medium spread plate laboratory procedure. Treatment temperature was kept below 35 degrees C. Results showed no difference in the sensitivities of E. coli O157:H7 and E. coli 8739 against PEF treatment. PEF is a promising technology for the inactivation of E. coli O157:H7 and E. coli 8739 in apple juice.  相似文献   

18.
Combinations of different hurdles, including moderately high temperatures (<60 degrees C), antimicrobial compounds, and pulsed electric field (PEF) treatment, to reduce Salmonella in pasteurized and freshly squeezed orange juices (with and without pulp) were explored. Populations of Salmonella Typhimurium were found to decrease with an increase in pulse number and treatment temperature. At a field strength of 90 kV/cm, a pulse number of 20, and a temperature of 45 degrees C, PEF treatment did not have a notable effect on cell viability or injury. At and above 46 degrees C, however, cell death and injury were greatly increased. Salmonella numbers were reduced by 5.9 log cycles in freshly squeezed orange juice (without pulp) treated at 90 kV/cm, 50 pulses, and 55 degrees C. When PEF treatment was carried out in the presence of nisin (100 U/ml of orange juice), lysozyme (2,400 U/ml), or a mixture of nisin (27.5 U/ml) and lysozyme (690 U/ml), cell viability loss was increased by an additional 0.04 to 2.75 log cycles. The combination of nisin and lysozyme had a more pronounced bactericidal effect than did either nisin or lysozyme alone. An additional Salmonella count reduction of at least 1.37 log cycles was achieved when the two antimicrobial agents were used in combination. No significant difference (P > 0.05) in cell death was attained by lowering the pH value; only cell injury increased. Inactivation by PEF was significantly more extensive (P < 0.05) in pasteurized orange juice than in freshly squeezed orange juice under the same treatment conditions. This increase might be due to the effect of the chemical composition of the juices.  相似文献   

19.
The effect of pulsed electric field (PEF) treatment, applied in a continuous system, on Saccharomyces cerevisiae and Bacillus cereus cells and spores was investigated. S. cerevisiae inoculated into sterilised apple juice and B. cereus cells and spores inoculated into sterilised 0.15% NaCl were treated with electric field strengths of 10–28 kV/cm using an 8.3 pulse number and with pulse numbers of 4.2–10.4 at 20 kV/cm, respectively. The inactivation of S. cerevisiae depended on the electric field intensity and number of pulses. The yeast inactivation increased when the applied electric field intensity and pulse number were increased. Approximately four log cycles reduction was achieved in apple juice using 10.4 pulses at 20 kV/cm. B. cereus cells were less sensitive to PEF treatment. The reduction in microbial count of B. cereus cells was hardly more than one log cycle using 10.4 pulses at 20 kV/cm. The applied PEF treatment was ineffective on Bacillus cereus spores.  相似文献   

20.
Pulsed electric fields (PEF) were applied to freshly prepared soya milk using a laboratory scale continuous PEF system to study the feasibility of inactivating lipoxygenase (LOX). Square wave PEF using different combinations of pre-treatment temperature, electric field strength and treatment time were evaluated in this study. Inactivation curves for the enzyme were plotted for each parameter and inactivation kinetics were calculated and modelled. Results showed the highest level of inactivation (84.5%) was obtained using a combination of preheating to 50 °C, and a PEF treatment time of 100 μs at 40 kV/cm. Inactivation of LOX activity as a function of treatment time could be described using a first order kinetic model. Calculated D values following pre-heating to 50 °C were 172.9, 141.6 and 126.1 μs at 20, 30 and 40 kV/cm, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号