首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Leukemia/lymphoma cells, clinically refractory to therapy are often associated with expression of P-glycoprotein (P-gp), which is encoded by the multidrug resistance (MDR) gene, mdr1. Cell lines expressing mdr1 exhibit resistance to several structurally unrelated lipophilic drugs, such as anthracyclines, vinca alkaloids, and epopodophyllotoxins. This MDR can be conferred to drug-sensitive cells mdr1 cDNA transfer. In resistant cells, MDR is characterized by overexpression of P-gp and by the enhanced efflux, and P-gp fluorescence probe, rhodamine 123 (Rh 123). This can be circumvented by addition of certain non-cytotoxic drugs, such as verapamil and cyclosporin A.  相似文献   

2.
To address a possible impairment of multidrug resistance mechanisms in acquired aplastic anaemia (AA), the functions of P-glycoprotein (P-gp) and multidrug resistance-associated protein (MRP) were respectively assessed by rhodamine 123 (Rh123) and daunorubicin (DNR) efflux in peripheral blood lymphocytes from AA patients. The proportion of Rh123-effluxing T cells was significantly decreased in AA, relative to controls. Interestingly, these changes were also present in patients with AA in remission. Conversely, Rh123 efflux in B and natural killer (NK) cells and DNR efflux in peripheral blood lymphocytes were unchanged. These data indicated that P-gp activity was decreased in AA not only during the development of the disease, but also after remission, introducing a new concept on the pathophysiology of AA by suggesting that it may contribute to drug-induced injury to haemopoietic cells in some cases of AA, by increasing the proportion of susceptible cells.  相似文献   

3.
PURPOSE: Drug disposition is often altered in inflammatory disease. Although the influence of inflammation on hepatic drug metabolism and protein binding has been well studied, its impact on drug transport has largely been overlooked. The multidrug resistance (MDR) gene product, P-glycoprotein (P-gp) is involved in the active secretion of a large variety of drugs. Our goal was to ascertain the influence of acute inflammation (AI) on the expression and functional activity of P-gp. METHODS: AI was induced in rats through turpentine or lipopolysaccharide (LPS) administration. Expression of P-gp in liver was detected at the level of protein on Western blots using the monoclonal antibody C-219 and at the level of mRNA using an RNase protection assay. P-gp mediated transport activity was assessed by measuring the verapamil-inhibitable efflux of rhodamine 123 (R123) in freshly isolated hepatocytes. RESULTS: Turpentine-induced AI significantly decreased the hepatic protein expression of P-gp isoforms by 50-70% and caused a significant 45-65% reduction in the P-gp mediated efflux of R123. Diminished mRNA levels of all three MDR isoforms were seen. LPS-induced AI similarly resulted in significantly reduced levels and activity of P-gp in liver. Although differences in the constitutive levels of P-gp were seen between male and female rats, the influence of AI on P-gp expression and activity was not gender specific. CONCLUSIONS: Experimentally-induced inflammation decreases the in vivo expression and activity of P-gp in liver. This is the first evidence that expression of P-gp is modulated in response to experimentally-induced inflammation.  相似文献   

4.
5.
6.
MCF-7/AdrVp is a multidrug-resistant human breast cancer subline that displays an ATP-dependent reduction in the intracellular accumulation of anthracycline anticancer drugs in the absence of overexpression of known multidrug resistance transporters such as P glycoprotein or the multidrug resistance protein. RNA fingerprinting led to the identification of a 2.4-kb mRNA that is overexpressed in MCF-7/AdrVp cells relative to parental MCF-7 cells. The mRNA encodes a 655-aa [corrected] member of the ATP-binding cassette superfamily of transporters that we term breast cancer resistance protein (BCRP). Enforced expression of the full-length BCRP cDNA in MCF-7 breast cancer cells confers resistance to mitoxantrone, doxorubicin, and daunorubicin, reduces daunorubicin accumulation and retention, and causes an ATP-dependent enhancement of the efflux of rhodamine 123 in the cloned transfected cells. BCRP is a xenobiotic transporter that appears to play a major role in the multidrug resistance phenotype of MCF-7/AdrVp human breast cancer cells.  相似文献   

7.
8.
P-glycoprotein (P-gp), responsible for multidrug resistance (MDR) of tumoral cells, is also expressed in apical membranes of normal epithelial cells, among which are proximal tubular cells. Ecto-5'-nucleotidase (5'Nu), co-located with P-gp in renal brush border membranes, could be instrumental in the expression of MDR phenotype. P-gp activity [assessed by rhodamine 123 (R123) and [3H]vinblastine (3H-VBL) accumulation] was evaluated in MDCK cell lines in which human 5'Nu was expressed at different levels after retroviral infection: MDCK-5'NU/- cells with a low 5'Nu activity (Vmax < 2 pmol/mg protein/min) and MDCK-5'NU/+ cells, which expressed a high level of 5'Nu (Vmax 150 +/- 18.5 pmol/mg protein/min). MDCK-5'NU/- cells did not display functional expression of MDR. In MDCK-5'NU/+ cells, R123 and 3H-VBL accumulation was significantly lower than in MDCK-5'NU/- cells and was dramatically enhanced by P-gp inhibitors. This high P-gp activity in MDCK-5'NU/+ cells was confirmed by their resistance to colchicine (measured by LDH release and MTT assay) as compared to MDCK-5'NU/- and was accounted for by increased membrane expression of P-gp assessed by Western blot. Neither AMP nor adenosine, the substrate and the product of 5'Nu, respectively, affected P-gp activity. Inhibition of 5'Nu with alpha beta-methylene-adenosine-diphosphate (alpha beta MADP) or with a blocking anti-5'Nu antibody (1E9) did not blunt MDR expression in MDCK-5'NU/+ cells. Conversely, the anti-5'Nu antibody 5F/F9, which did not block the enzymatic site, induced a decrease of P-gp activity. Further, incubation of MDCK-5'NU/- cells with conditioned medium from MDCK-5'NU/+ cells, which contained significant amounts of released 5'Nu, induced MDR phenotype. In conclusion: (i) expression of ecto-5'Nu promotes multidrug resistance (MDR) activity in renal epithelial cells by enhancement of P-gp expression; (ii) this effect does not involve enzymatic activity of 5'Nu; (iii) supernatants of cells that express 5'Nu conferred P-gp activity to 5'Nu negative cells.  相似文献   

9.
Clinical chemotherapy of breast carcinomas must be considered insufficient, mainly due to the appearance of drug resistance. The multidrug resistance (MDR) phenotype, either intrinsically occurring or acquired, e.g., against a panel of different antineoplastic drugs, is discussed in relation to several MDR-associated genes such as the MDR-gene mdr1 encoding the P-glycoprotein (PGP), the MRP gene (multidrug resistance protein) encoding an MDR-related protein or the LRP gene encoding the lung resistance protein. Numerous experimental and clinical approaches aiming at reversing resistance require well-characterised in vitro and in vivo models. The aim of our work was to develop multidrug resistant sublines from human xenotransplanted breast carcinomas, in addition to the broadly used line MCF-7 and its multidrug resistant subline MCF-7/AdrR. MDR was induced in vitro with increasing concentrations of Adriablastin (ADR) for several weeks, resulting in a 3.5- to 35-fold increase in IC50 values using the MTT-test. Cell lines were cross-resistant toward another MDR-related drug, vincristine, but remained sensitive to non-MDR-related compounds such as cisplatin and methotrexate. The resistance toward Adriamycin and vincristine was confirmed in vivo by a lack of tumour growth inhibition in the nude mouse system. Gene expression data for the mdr1/PGP, MRP/MRP and LRP/LRP on both the mRNA (RT-PCR) and the protein levels (immunoflow cytometry) demonstrated that induction of mdr1 gene expression was responsible for the acquired MDR phenotype. Rhodamine efflux data, indicated by PGP overexpression, underlined the development of this MDR mechanism in the newly established breast carcinoma lines MT-1/ADR, MT-3/ADR and MaTu/ADR.  相似文献   

10.
Low-intensity fluorescence of rhodamine-123 (Rh-123) discriminates a quiescent hematopoietic stem cell (HSC) population in mouse bone marrow, which provides stable, long-term hematopoiesis after transplantation. Rh-123 labels mitochondria with increasing intensity proportional to cellular activation, however the intensity of staining also correlates with the multidrug resistance (MDR) phenotype, as Rh-123 is a substrate for P-glycoprotein (P-gp). To address the mechanisms of long-term repopulating HSC discrimination by Rh-123, mouse bone marrow stem and progenitor cells were isolated based on surface antigen expression and subsequently separated into subsets using various fluorescent probes sensitive to mitochondrial characteristics and/or MDR function. We determined the cell cycle status of the separated populations and tested for HSC function using transplantation assays. Based on blocking studies using MDR modulators, we observed little efflux of Rh-123 from HSC obtained from young (3- to 4-week-old) mice, but significant efflux from HSC derived from older animals. A fluorescent MDR substrate (Bodipy-verapamil, BodVer) and Rh-123 both segregated quiescent cells into a dim-staining population, however Rh-123-based separations resulted in better enrichment of HSC function. Similar experiments using two other fluorescent probes with specificity for either mitochondrial mass or membrane potential indicated that mitochondrial activation is more important than either mitochondrial mass or MDR function in defining HSC in young mice. This conclusion was supported by morphologic studies of cell subsets separated by Rh-123 staining.  相似文献   

11.
VX-710 or (S)-N[2-Oxo-2-(3,4,5-trimethoxyphenyl)acetyl]-piperidine-2-carboxylic acid 1,7-bis(3-pyridyl)-4-heptyl ester, a novel non-macrocyclic ligand of the FK506-binding protein FKBP12, was evaluated for its ability to reverse P-glycoprotein-mediated multidrug resistance in vitro. VX-710 at 0.5-5 microM restored sensitivity of a variety of multidrug resistant cells to the cytotoxic action of doxorubicin, vincristine, etoposide or paclitaxel, including drug-selected human myeloma and epithelial carcinoma cells, and human MDR1 cDNA-transfected mouse leukemia and fibroblast cells. Uptake experiments showed that VX-710 at 0.5-2.5 microM fully restored intracellular accumulation of [14C]doxorubicin in multidrug resistant cells, suggesting that VX-710 inhibits the drug efflux activity of P-glycoprotein. VX-710 effectively inhibited photoaffinity labeling of P-glycoprotein by [3H]azidopine or [125I]iodoaryl azidoprazosin with EC50 values of 0.75 and 0.55 microM. Moreover, P-glycoprotein was specifically labeled by a tritiated photoaffinity analog of VX-710 and unlabeled VX-710 inhibited analog binding with an EC50 of 0.75 microM. VX-710 also stimulated the vanadate-inhibitable P-glycoprotein ATPase activity 2- to 3-fold in a concentration-dependent manner with an apparent k(a) of 0.1 microM. These data indicate that a direct, high-affinity interaction of VX-710 with P-glycoprotein prevents efflux of cytotoxic drugs by the MDR1 gene product in multidrug resistant tumor cells.  相似文献   

12.
13.
Resistance to chemotherapy in multiple myeloma (MM) and acute myeloid leukemia (AML) is frequently caused by multiple drug resistance (MDR), characterized by a decreased intracellular drug accumulation. MDR is associated with expression of P-glycoprotein (P-gp). GF120918, an acridine derivative, enhances doxorubicin cell kill in resistant cell lines. In this study, the effect of GF120918 on MDR cell lines and fresh human leukemia and myeloma cells was investigated. The reduced net intracellular rhodamine-123 (Rh-123) accumulation in the MDR cell lines RPMI 8226/Dox1, /Dox4, /Dox6 and /Dox40 as compared with wild-type 8226/S was reversed by GF120918 (0.5-1.0 microM), and complete inhibition of rhodamine efflux was achieved at 1-2 microM. This effect could be maintained in drug-free medium for at least 5 h. GF120918 reversal activity was significantly reduced with a maximum of 70% in cells incubated with up to 100% serum. GF120918 significantly augmented Rh-123 accumulation in vitro in CD34-positive acute leukemia (AML) blasts and CD38-positive myeloma (MM) plasma cells obtained from 11/27 de novo AML and 2/12 refractory MM patients. A significant correlation was observed between a high P-gp expression and GF120918 induced Rh-123 reversal (P=0.0001). Using a MRK16/IgG2a ratio > or = 1.1, samples could be identified with a high probability of GF120918 reversal of Rh-123 accumulation. In conclusion, GF120918 is a promising MDR reversal agent which is active at clinically achievable serum concentrations.  相似文献   

14.
15.
The relationship between P-glycoprotein expression and malignancy is controversial. We have recently found that, in osteosarcoma, multidrug resistance (MDR) is associated with a less aggressive behavior, both in vitro and in clinical settings. In this study, we evaluated whether P-glycoprotein overexpression has a cause-effect relationship with the reduced metastatic potential of MDR cells, or rather reflects a more complex phenotype. MDR1 gene-transfected osteosarcoma cell clones, showing different levels of P-glycoprotein expression, were analysed for their in vitro characteristics and their tumorigenic and metastatic ability in athymic mice. Apart from the different levels of P-glycoprotein, no significant change in the expression of surface antigens or in the differentiative features were observed in the MDR1 gene transfectants compared to the parental cell lines or control clones, obtained by transfection with neo gene alone. In contrast to controls, however, MDR1 transfectants showed a significantly lower ability to grow in semi-solid medium and were completely unable to grow and give lung metastases in athymic mice. These findings indicate that P-glycoprotein overexpression is causally associated with a low malignant potential of osteosarcoma cells, and open new insights on the role and functions of P-glycoprotein activity.  相似文献   

16.
We reviewed mechanisms of multidrug resistance (MDR) phenotype in tumor cells and evaluated analytical methods for detection of clinical MDR. A well-recognized mechanism of MDR phenotype is the induction and increased expression of P-glycoprotein (P-gp) which is a 170 kDa cellular transmembrane protein encoded by a multidrug-resistance 1 gene (MDR1) and works as a drug efflux pump. Cellular MDR phenotype through P-gp/MDR1 can be detectable at protein level by: (1) using immunohistochemical method, flow cytometric assay and Western blot analysis with monoclonal antibodies against human P-gp, and (2) measuring Rhodamine 123 dye-efflux as a functional assay of P-gp. Molecular knowledge and recent technical progress enable to determine MDR1 gene expression by RT-PCR-based analytical methods as well as conventional quantification methods of gene expression such as Northern blot analysis. In the evaluation of P-gp/MDR1 expression in clinical samples, in which amount of materials was limited, utilization of simple and sensitive methods like competitive RT-PCR assay might be efficacious for its quantitative detection in clinical laboratories. Evidences which showed the positive correlation between the expression of P-gp/MDR1 and clinical resistance or refractoriness of tumor cells to anticancer drugs involved in MDR have been accumulated and support the clinical importance of its detection to circumvent resistance with alternate use of non-MDR drugs.  相似文献   

17.
18.
The phenomenon of multidrug resistance (MDR), that involves the efflux pump P-glycoprotein, can be reversed by a number of substances known as MDR modulators or reversing agents. In the present study we investigated the action of three anthracyclines, mitoxantrone and vincristine on short-term (72 h) cultures using 2 methods ([3H] incorporation and MTT (3-[4,5-dimethylthiasol-2-yl]-2,5-diphenyltetrazolium bromide)), on 2 cell lines: K562, a human erythroleukemia, and a vincristine-resistant subline K562-Lucena 1. Using the same culture methods plus flow cytometry analysis, the reversing potentials of cyclosporin A and verapamil were studied in both cell lines. There were differences in the sensitivity and resistance profiles of the two lines to the various drugs but daunorubicin (5 micrograms/ml) and idarubicin (0.035 micrograms/ml) were the most effective when each was used in high concentration. Cyclosporine at 200 ng/ml and verapamil at 5 micrograms/ml reversed MDR in the resistant line, and had a synergistic action with chemotherapeutic agents on the sensitive line. Again differences were demonstrable between combinations of the various drugs and reversal was only clearly shown with the method measuring cell proliferation ([3H] incorporation) but not by the method measuring metabolic activity (MTT). The efflux of rhodamine-123 mimics the functional activity of the pump and cyclosporine was a better reversing agent by this criteria. These data show that the results obtained in in vitro studies attempting to identify treatments for different types of leukemias depend to a large extent on the methods used to measure cell response.  相似文献   

19.
20.
The expression of P-glycoprotein (Pgp), which is associated with multidrug resistance (MDR), was investigated in 20 B-cell chronic lymphocytic leukaemia (B-CLL) patients by flow cytometry using two Pgp-specific monoclonal antibodies (mAb), MRK-16 which recognizes an extracellular epitope, and JSB-1 which recognizes an intracellular epitope. Sixteen (80%) patients were positive with MRK-16 whereas all patients were positive with JSB-1. The proportion of Pgp-positive lymphocytes from each patient sample varied from 2-94% for MRK-16 and 20-93% for JSB-1. There was no correlation between the level of positivity and disease stage or treatment history. In vitro drug resistance to vincristine (VCR) and doxorubicin (DOX) was determined by the colorimetric MTT assay. All patients were resistant to one or both drugs being consistent with the expression of Pgp. There was no correlation between the level of resistance and disease stage or drug treatment. We investigated the expression of Pgp in the normal counterpart of the B-CLL cells, CD5+CD19+ B-lymphocytes. A minor subpopulation (3%) of CD5+CD19+ lymphocytes isolated from normal controls expressed Pgp suggesting that these cells may be the potential precursors to the B-CLL cell. We conclude that Pgp expression and drug resistance are inherent characteristics of the B-CLL lymphocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号