首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 561 毫秒
1.
胡顺勇 《电讯技术》2024,64(7):1156-1162
介绍了一种基于混合波导魔T的V频段宽带高效率功率合成放大器。采用混合波导魔T结构和超宽带扇形开路薄膜电阻,设计了一款覆盖整个V频段的新型小型化高隔离二路功分器,实测在50~75 GHz频率范围内,平均电路损耗0.2 dB,输入回波小于-20 dB,隔离和输出回波小于-14 dB。基于该电路结构,采用V频段宽带GaN功放芯片,研制了一种3.5 W功率模块,以该功率模块为基本单元,并采用16路高效率功率分配/合成网络,研制出一款V频段宽带高效率功率合成放大器。实测在50~75 GHz的V频段全频段范围内,连续波饱和输出功率大于47 dBm,小信号增益大于46 dB,合成效率全频带内大于82%,在全频段实现了高效率合成和大功率输出。该电路结构紧凑,工作频带宽,合成效率高且便于散热,具有很好的工程应用价值。  相似文献   

2.
采用0.5μm GaAs工艺设计并制造了一款单片集成驱动放大器的低变频损耗混频器.电路主要包括混频部分、巴伦和驱动放大器3个模块.混频器的射频(RF)、本振(LO)频率为4~7 GHz,中频(IF)带宽为DC~2.5 GHz,芯片变频损耗小于7 dB,本振到射频隔离度大于35 dB,本振到中频隔离度大于27 dB.1 dB压缩点输入功率大于11 dBm,输入三阶交调点大于20 dBm.该混频器单片集成一款驱动放大器,解决了无源混频器要求大本振功率的问题,变频功能由串联二极管环实现,巴伦采用螺旋式结构,在实现超低变频损耗和良好隔离度的同时,保持了较小的芯片面积.整体芯片面积为1.1 mm×1.2 mm.  相似文献   

3.
研制360 MHz 12倍频器.采用3、4次倍频级联方法,使倍频器在3~5 dBm 信号输入情况下,输出功率大于6 dBm ,功率波动小于2 dB,谐波抑制度大于50 dB.介绍了倍频器的设计思路、调试方法和测试结果等.  相似文献   

4.
毛小庆  何勇畅  陈志巍  喻青  高海军 《微电子学》2020,50(4):499-502, 508
基于0.15 μm GaAs(D-Mode)pHEMT工艺,采用多级级联的方式,设计了一种中心频率为2.4 GHz的高效率功率放大器。采用两级级联放大结构,驱动级采用共源结构,提高了输出功率和线性度。功率级采用自偏置技术共源共栅结构,增益和效率得到提升。工作模式分别为A类和AB类。版图面积为1.45 mm2。仿真结果表明,在驱动级电路工作于5 V、功率级电路工作于10 V、频率为2.4 GHz的条件下,1 dB压缩点功率为31.99 dBm,最大输出功率为32.01 dBm,小信号增益为30.51 dB,功率附加效率为40.74%。输入功率为1.48 dBm时,在1.94~2.82 GHz频带内,输出功率为30.29~32.07 dBm,功率附加效率为30%~41.9%,小信号增益峰值为31.97 dB,3 dB带宽为880 MHz。  相似文献   

5.
梳状谱信号发生器在微波频率合成电路中应用广泛。文中利用阶跃恢复二极管的强非线性特点,设计了一种输入频率为100 MHz、输出频率为0.1~4 GHz的梳状谱信号发生器。首先通过理论计算获得初值,再通过ADS进行仿真优化,以及多次调试和实验,使该电路在0.1~4 GHz范围内产生丰富的谐波,并适合于工程应用。  相似文献   

6.
提出了一种全新的电调Doherty移动基站功率放大器。该Doherty放大器的载波放大器和峰值放大器的驱动功率分配比及输出合成相位实现了电可调,从而保证了Doherty功率放大器的最佳驱动功率分配比,以及最佳的输出合成相位,同时结合内部线性化技术以实现Doherty功率放大器的最优性能。为保证功率放大器性能的稳定,设计了一种用于Doherty功率放大器的恒静态偏置电路,在-25℃~+50℃的高低温实验中使放大器偏置电流的波动小于5%。功放的工作频率为870~890MHz,增益大于58dB。在CDMA2000信号测试下,输出功率为50.06dBm时,其ACLR(邻道泄漏功率比)小于-47.5dBc,整机效率达42.3%(含驱动级)。  相似文献   

7.
基于GaAs肖特基二极管工艺,研制了一款无源毫米波二倍频器单片微波集成电路(MMIC).该电路的拓扑结构包含并联二极管对,输入巴伦和输入、输出匹配电路,其中输入巴伦为螺旋型Marchand巴伦,使电路输入输出端具有奇偶次谐波相互隔离的特点,不仅抑制了输出奇次谐波,而且增加了线间的耦合,显著减小了芯片的面积.在设计软件对电路进行仿真优化的基础上,经过实际流片并对芯片进行了测试,实现了输入功率为15 dBm时,输出频率在44~60 GHz处,输出功率大于-1 dBm,变频损耗小于16 dB,对基波和各次谐波抑制度大于30 dBc的技术指标.芯片实际尺寸为1.45 mm×1.1 mm.  相似文献   

8.
研制了X波段的InGaP/GaAs HBT单级MMIC功率放大器,该电路采用自行开发的GaAs HBT自对准工艺技术制作.电路偏置于AB类,小信号S参数测试在8~8.5GHz范围内,线性增益为8~9dB,输入驻波比小于2,输出驻波比小于3,优化集电极偏置后,线性增益为9~10dB.在8.5GHz进行连续波功率测试,在优化的负载阻抗条件下,P1dB输出功率为29.4dBm,相应增益7.2dB,相应PAE〉40%,电路的饱和输出功率Psat为30dBm.  相似文献   

9.
本文阐述了应用A_■介质谐振器作为输出滤波器的4GHz高次倍频器的设计和试验数据。采用介质谐振器滤波的高次倍频器稳定可靠,在温度变化-30~+55℃之间,功率变化小于2dB。可做为一种高稳定、高效率、低相位噪声微波信号源。在雷达和通信频率源中有着广泛应用。如果输出加上功率放大器,功率可达到+10dBm。  相似文献   

10.
研制了X波段的InGaP/GaAs HBT 单级MMIC功率放大器,该电路采用自行开发的GaAs HBT自对准工艺技术制作.电路偏置于AB类,小信号S参数测试在8~8.5GHz范围内,线性增益为8~9dB,输入驻波比小于2,输出驻波比小于3,优化集电极偏置后,线性增益为9~10dB.在8.5GHz进行连续波功率测试,在优化的负载阻抗条件下,P1dB输出功率为29.4dBm,相应增益7.2dB,相应PAE>40%,电路的饱和输出功率Psat为30dBm.  相似文献   

11.
利用0.25μmGaAsPHEMT低噪声工艺,设计并制造了2种毫米波大动态宽带单片低噪声放大器。第1种为低增益大动态低噪声放大器,单电源+5V工作,测得在26~40GHz范围内,增益G=10±0.5dB,噪声系数NF≤2.2dB,1分贝压缩点输出功率P1dB≥15dBm;第2种为低压大动态低噪声放大器,工作电压为3.6V,静态电流0.6A(输出功率饱和时,动态直流电流约为0.9A),在28~35GHz范围内,测得增益G=14~17dB,噪声系数约4.0dB,1分贝压缩点输出功率P1dB≥24.5dBm,最大饱和输出功率≥26.8dBm,附加效率约10%~13.6%。结果中还给出了2种放大器直接级联的情况。  相似文献   

12.
报告了一个两级 C-波段功率单片电路的设计、制作和性能 ,该单片电路包括完全的输入端和级间匹配 ,输出端的匹配在芯片外实现 ,该放大器在 5.2~ 5.8GHz带内连续波工作 ,输出功率大于 36.6d Bm,功率增益大于 18.6d B,功率附加效率 34 % ,4芯片合成的功率放大器在 4 .7~ 5.3GHz带内 ,输出功率大于 4 2 .8d Bm( 19.0 W) ,功率增益大于 18.8d B,典型的功率附加效率为 34 %。  相似文献   

13.
报道一种新型 X波段 0 .2 5 μm PHEMT全单片集成低噪声子系统。该子系统由开关衰减电路、采样检波电路和低噪声放大器三部分组成。开关插入损耗仅 0 .5 d B,放大器噪声系数小于 1 .5 d B。当开关控制电压为-2 V,输入电平 <-7d Bm时 ,此系统相当于一个低噪声放大器。在 8.5~ 1 0 .5 GHz频率内 ,整个系统增益大于2 4d B,噪声系数小于 2 .0 d B,输入输出 VSWR<1 .5 ;但当输入电平 >-7d Bm时 ,采样检波电路开始工作 ,打开主放大器前的开关衰减器 ,限制输入功率进入 LNA。输入功率越大 ,反射越大。在开关控制电压为 +2 V时 ,无论输入功率多大 ,开关关闭通道  相似文献   

14.
We report on an InAlAs/InGaAs HBT Gilbert cell double-balanced mixer which upconverts a 3 GHz IF signal to an RF frequency of 5-12 GHz. The mixer cell achieves a conversion loss of between 0.8 dB and 2.6 dB from 5 to 12 GHz. The LO-RF and IF-RF isolations are better than 30 dB at an LO drive of +5 dBm across the RF band. A pre-distortion circuit is used to increase the linear input power range of the LO port to above +5 dBm. Discrete amplifiers designed for the IF and RF frequency ports make up the complete upconverter architecture which achieves a conversion gain of 40 dB for an RF output bandwidth of 10 GHz. The upconverter chip set fabricated with InAlAs/InGaAs HBT's demonstrates the widest gain-bandwidth performance of a Gilbert cell based upconverter compared to previous GaAs and InP HBT or Si-bipolar IC's  相似文献   

15.
报告了研制的 9.6mm栅宽双δ-掺杂功率 PHEMT,在 fo=1 1 .2 GHz、Vds=8.5 V时该器件输出功率3 7.2 8d Bm,功率增益 9.5 d B,功率附加效率 44.7% ,在 Vds=5~ 9V的范围内 ,该器件的功率附加效率均大于42 % ,两芯片合成 ,在 1 0 .5~ 1 1 .3 GHz范围内 ,输出功率大于 3 9.92 d Bm,最大功率达到 40 .3 7d Bm,功率增益大于 9.9d B,典型的功率附加效率 40 %。  相似文献   

16.
该组件是将输入信号 (1 5 GHz,1 0 d Bm)倍频至 3 0 GHz,与本振信号 (5 GHz,1 0 d Bm)上变频到 3 5 GHz,然后进行功率放大输出。其倍频部分采用 Ga As PHEMT有源倍频并进行放大 ,混频电路采用 Ga As二极管的双平衡混频 ,滤波放大后由 8mm波导输出。最终结果为输出频率为 3 5 GHz,输出功率为 1 7d Bm,谐波抑制度大于 40 d BC,偏离中心频率± 2 0 0 MHz带宽内 ,幅度不平坦度小于 1 .5 d B。整个组件尺寸仅为 60 mm×2 2 mm× 1 5 mm。  相似文献   

17.
An X-band FM deviator with a Gunn diode has been developed which can be tuned from 9.8 to 10.5 GHz by a 2.7 volt change in bias voltage, with an output power of greater than +10.5 dBm over the band flat to within 2 dB. High-speed operations employing a 224 Mbit/s (megabits per second) pulse pattern generator have shown that the deviator is capable of following the input signal.  相似文献   

18.
X波段宽带单片低噪声放大器   总被引:12,自引:1,他引:12  
从获取放大器的等噪声系数圆最大半径的角度来进行电路设计,设计了工作于X波段9~14GHz的宽带低噪声单片放大器,采用法国OMMIC公司的0.2μmGaAsPHEMT工艺(fT=60GHz)研制了芯片。在片测试结果为在9~14GHz,噪声系数<2.5dB,最小噪声系数在10.4GHz为2.0dB,功率增益在所需频段9~14GHz大于21dB,输入回波损耗<-10dB,输出回波损耗<-6dB。在11.5GHz,输出1dB压缩点功率为19dBm。  相似文献   

19.
微波毫米波宽带单片低噪声放大器   总被引:1,自引:1,他引:0  
推导了反馈电路理论,利用0.25μmGaAs PHEMT工艺,研制了两种并联反馈单片低噪声放大器。第一种放大器的工作频带为6~18GHz,测得增益G≥21dB,带内增益波动ΔG≤±1.0dB,噪声系数NF典型值为2.0dB,输入驻波VSWRin≤1.5,输出驻波VSWRout≤2.0,1分贝压缩点输出功率P1dB≥11dBm。第二种放大器的工作频带为26~40GHz,测得增益G≥17dB,噪声系数NF约为2.0dB,输入、输出驻波VSWR≤2.5,1分贝压缩点输出功率P1dB≥10dBm。两种电路的测试结果验证了设计的正确性。  相似文献   

20.
运用微波在片测试技术和IC-CAP模型提取软件对总栅宽为850μm PHEMT器件进行了大信号建模,并利用此模型,采用分布式放大器与电抗匹配相结合的方法,制备了一款三级宽带功率放大器。实验测试结果和ADS仿真结果相吻合。其测试结果为:在6~18GHz频段内,平均输出功率Po为33dBm,功率增益Gp在22~24dB之间,功率附加效率PAE在23%~28%之间,输入输出端口电压驻波比VSWR<1.8,稳定性判断因子K>1(在5~19GHz内)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号