首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a nonlinear discrete-time system of the form Σ: x(t+1)=f(x(t), u(t)), y(t) =h(x(t)), where x ε RN, u ε Rm, y ε Rq and f and h are analytic. Necessary and sufficient conditions for local input-output linearizability are given. We show that these conditions are also sufficient for a formal solution to the global input-output linearization problem. Finally, we show that zeros at infinity of ε can be obtained by the structure algorithm for locally input-output linearizable systems.  相似文献   

2.
We obtain necessary and sufficient conditions for the existence of a finite-dimensional filter for the discrete-time nonlinear system (ε xk+1 =φ(xk), yk = h(xk)+η(xkk, K=0, 1,…. This system is distinguished by the absence of noise in the dynamic and by the correlation between the state and the intensity of noise in the observations.The necessary and sufficient condition provides an explicit formula for the minimal filter and various system-theoretic properties of (ε) and of the minimal filter.  相似文献   

3.
The adaptive control un is designed for the stochastic system A(z)yn+1 = B(z)un+C(z)wn+1 with unknown constant matrix coefficients in the polynomials A(z), B(z) and C(z) in the shift-back operator with the purposes that (1) the unknown matrices are strongly consistently estimated and (2) the poles and zeros are replaced in such a way that the system itself is transferred to A0(z)yn+1 = B0(z)un0+n+1 with given A0(z), B0(z) and un0 so that the pole-zero assignment error {n+1} is minimized. The problem of adaptive pole-zero assignment combined with tracking is also considered in this paper. Conditions used are imposed only on A(z), B(z) and C(z).  相似文献   

4.
Under relative-degree-one and minimum-phase assumptions, it is well known that the class of finite-dimensional, linear, single-input (u), single-output (y) systems (A,b,c) is universally stabilized by the feedback strategy u = Λ(λ)y, λ = y2, where Λ is a function of Nussbaum type (the terminology “universal stabilization” being used in the sense of rendering /s(0/s) a global attractor for each member of the underlying class whilst assuring boundedness of the function λ(·)). A natural generalization of this result to a class k of nonlinear control systems (a,b,c), with positively homogeneous (of degree k 1) drift vector field a, is described. Specifically, under the relative-degree-one (cb ≠ 0) and minimum-phase hypotheses (the latter being interpreted as that of asymptotic stability of the equilibrium of the “zero dynamics”), it is shown that the strategy u = Λ(λ)/vby/vbk−1y, assures k-universal stabilization. More generally, the strategy u = Λ(λ)exp(/vby/vb)y, assures -universal stabilization, where = k 1 k.  相似文献   

5.
This paper investigates whether random set inclusion is preserved by non-interactivity and by stochastic independence. Let (𝒳1, x 1), (𝒳2, x 2) be two random sets on U 1 and U 2, respectively, and let (𝒴1, y 1), (𝒴2, y 2) be two consonant inclusions of theirs. Let (𝒵1, z 1) be the random relation on U 1 × U 2 obtained from (𝒳1, x 1) and (𝒳2, x 2) under the hypothesis of stochastic independence, and let (𝒵2, z 2) ((𝒵3, z 3), respectively) be the random relation on U 1 × U 2 obtained from (𝒴1, y 1), (𝒴2, y 2) under the hypothesis of non-interactivity (stochastic independence, respectively). We prove that these hypotheses do not imply that (𝒵1, z 1) ? (𝒵2, z 2), but imply that (𝒵1, z 1) ? (𝒵3, z 3).  相似文献   

6.
The optimal least-squares filtering of a diffusion x(t) from its noisy measurements {y(τ); 0 τ t} is given by the conditional mean E[x(t)|y(τ); 0 τ t]. When x(t) satisfies the stochastic diffusion equation dx(t) = f(x(t)) dt + dw(t) and y(t) = ∫0tx(s) ds + b(t), where f(·) is a global solution of the Riccati equation /xf(x) + f(x)2 = f(x)2 = αx2 + βx + γ, for some , and w(·), b(·) are independent Brownian motions, Benes gave an explicit formula for computing the conditional mean. This paper extends Benes results to measurements y(t) = ∫0tx(s) ds + ∫0t dx(s) + b(t) (and its multidimensional version) without imposing additional conditions on f(·). Analogous results are also derived for the optimal least-squares smoothed estimate E[x(s)|y(τ); 0 τ t], s < t. The methodology relies on Girsanov's measure transformations, gauge transformations, function space integrations, Lie algebras, and the Duncan-Mortensen-Zakai equation.  相似文献   

7.
This paper is concerned with the nonlinear partial difference equation with continuous variables
,where a, σi, τi are positive numbers, hi(x, y, u) ε C(R+ × R+ × R, R), uhi(x, y, u) > 0 for u ≠ 0, hi is nondecreasing in u, i = 1, …, m. Some oscillation criteria of this equation are obtained.  相似文献   

8.
The problem of finding global state space transformations and global feedback of the form u(t)= α(x) + ν(t) to transform a given nonlinear system to a controllable linear system on Rn or on an open subset of Rn, is considered here. We give a complete set of differential geometric conditions which are equivalent to the existence of a solution to the above problem.  相似文献   

9.
Nonlinear eigenvalue problems for quasilinear systems   总被引:1,自引:0,他引:1  
The paper deals with the existence of positive solutions for the quasilinear system (Φ(u'))' + λh(t)f(u) = 0,0 < t < 1 with the boundary condition u(0) = u(1) = 0. The vector-valued function Φ is defined by Φ(u) = (q(t)(p(t)u1), …, q(t)(p(t)un)), where u = (u1, …, un), andcovers the two important cases (u) = u and (u) = up > 1, h(t) = diag[h1(t), …, hn(t)] and f(u) = (f1(u), …, fn (u)). Assume that fi and hi are nonnegative continuous. For u = (u1, …, un), let
, f0 = maxf10, …, fn0 and f = maxf1, …, fn. We prove that the boundary value problem has a positive solution, for certain finite intervals of λ, if one of f0 and f is large enough and the other one is small enough. Our methods employ fixed-point theorem in a cone.  相似文献   

10.
We study the problem of semiglobally stabilizing uncertain nonlinear system

, with (A,B) in Brunowski form. We prove that if p1(z,u,t)u and p2(z,u,t)u are of order greater than 1 and 0, respectively, with “generalized” dilation δl(z,u)=(l1−nz1,…,l−1zn−1,zn,lu) and uniformly with respect to t, where zi is the ith component of z, then we can achieve semiglobal stabilization via arbitrarily bounded linear measurement feedback.  相似文献   

11.
Under some regularity assumptions and the following generalization of the well-known Bene condition [1]:
, where F(t,z) = g−2(t)∫f(t,z)dz, Ft, Fz, Fzz, are partial derivatives of F, we obtain explicit formulas for the unnormalized conditional density qt(z, x) α Pxt ε dz| ys, 0 st, where diffusion xt on R1 solves x0 = x, dxt = [β(t) + α(t)xt + f(t, xt] dt + g(t) dw1, and observation yt = ∫oth(s)xs ds + ∫ot(s) dw2t, with w = (w1, w2) a two-dimensional Wiener process.  相似文献   

12.
The aim of this paper is to investigate the exponential stability in mean square for a neutral stochastic differential functional equation of the form d[x(t) − G(xt)] = [f(t,x(t)) + g(t, xt)]dt + σ(t, xt)dw(t), where xt = {x(t + s): − τ s 0}, with τ > 0, is the past history of the solution. Several interesting examples are a given for illustration.  相似文献   

13.
In this paper, we propose a backstepping boundary control law for Burgers’ equation with actuator dynamics. While the control law without actuator dynamics depends only on the signals u(0,t) and u(1,t), the backstepping control also depends on ux(0,t), ux(1,t), uxx(0,t) and uxx(1,t), making the regularity of the control inputs the key technical issue of the paper. With elaborate Lyapunov analysis, we prove that all these signals are sufficiently regular and the closed-loop system, including the boundary dynamics, is globally H3 stable and well posed.  相似文献   

14.
Let G = (V, E, s, t) denote a directed network with node set V, arc set E = {1,…, n}, source node s and sink node t. Let Γ denote the set of all minimal st cutsets and b1(τ), …, Bn(τ), the random arc capacities at time τ with known joint probability distribution function. Let Λ(τ) denote the maximum st flow at time τ and D(τ), the corresponding critical minimal st cutset. Let Ω denote a set of minimal st cutsets. This paper describes a comprehensive Monte Carlo sampling plan for efficiently estimating the probability that D(τ)εΩ-Γ and x<λ(τ)y at time τ and the probability that D(τ) Ω given that x < Λ(τ) y at time τ. The proposed method makes use of a readily obtainable upper bound on the probability that Λ(τ) > x to gain its computational advantage. Techniques are described for computing confidence intervals and credibility measures for assessing that specified accuracies have been achieved. The paper includes an algorithm for performing the Monte Carlo sampling experiment, an example to illustrate the technique and a listing of all steps needed for implementation.  相似文献   

15.
Let f(xθ) = αθαx−(α+1)I(x>θ) be the pdf of a Pareto distribution with known shape parameter α>0, and unknown scale parameter θ. Let {(Xi, θi)} be a sequence of independent random pairs, where Xi's are independent with pdf f(xαi), and θi are iid according to an unknown distribution G in a class of distributions whose supports are included in an interval (0, m), where m is a positive finite number. Under some assumption on the class and squared error loss, at (n + 1)th stage we construct a sequence of empirical Bayes estimators of θn+1 based on the past n independent observations X1,…, Xn and the present observation Xn+1. This empirical Bayes estimator is shown to be asymptotically optimal with rate of convergence O(n−1/2). It is also exhibited that this convergence rate cannot be improved beyond n−1/2 for the priors in class .  相似文献   

16.
The authors consider the difference equations
δ(anδxn)=qnxn+1
and
δ(anδxn)=qnf(xn+1),
where an > 0, qn > 0, and f: R å R is continuous with uf(u) > 0 for u ≠ 0. They obtain necessary and sufficient conditions for the asymptotic behavior of certain types of nonoscillatory solutions of (*) and sufficient conditions for the asymptotic behavior of certain types of nonoscillatory solutions of (**). Sufficient conditions for the existence of these types of nonoscillatory solutions are also presented. Some examples illustrating the results and suggestions for further research are included.  相似文献   

17.
We present finite difference methods of order four and six for the numerical solution of (du/dx) for the non-linear differential equation u″ = f(x,u,u′), 0 < x > 1 subject to the boundary conditions u(0) = A, u(l) =B. The proposed methods require only three grid points and applicable to both singular and non-singular problems. Numerical examples are given to illustrate the methods and their convergence.  相似文献   

18.
It is shown in this paper that any nonlinear systems in d can be stabilized by Brownian motion provided |ƒ(x,t)| ≤ K|x| for some K > 0. On the other hand, this system can also be destabilized by Brownian motion if the dimension d ≥ 2. Similar results are also obtained for any given stochastic differential equation dx(t) = ƒ(x(t), t) + g(x(t), t) dW(t).  相似文献   

19.
This paper presents an elegant and computer-oriented procedure for the stable reduction of a linear discrete-time system via a multipoint continued-fraction expansion of its z-transfer function G(z). The proposed procedure involves the following three steps: (a) transform the z-domain squared-magnitude function P(z) = G(z)G(z ?1) of the system frequency response to P(u) by the transformation u = z + z ?1; (b) obtain an mth-order multipoint continued-fraction approximant Pm (u) to P(u); (c) factorize Pm (u) to yield a reduced z-transfer function Gm (z). The main feature of the procedure is that it guarantees the stability as well as the minimum-phase characteristics of the system and it also gives good overall approximations to both frequency and time responses.  相似文献   

20.
The one-dimensional diffusion xt satisfying dxt = f(xt)dt + dwt, where wt is a standard Brownian motion and f(x) satisfies the Bene condition f′(x) + f2(x) = ax2 + bx + c for all real x, is considered. It is shown that this diffusion does not admit a stationary probability measure except for the linear case f(x) = αx + β, α < 0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号