首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 31 毫秒
1.
含磷硅高分子阻燃剂与聚磷酸铵对EVA的协效阻燃作用   总被引:3,自引:0,他引:3  
研究了聚酯型磷-硅无卤阻燃剂(EMPZR)与聚磷酸铵(APP)对乙烯-醋酸乙烯酯共聚物(EVA)阻燃及力学性能的影响。结果表明,添加为40 %(质量分数,下同)的由EMPZR和APP所组成的复合阻燃剂得到的阻燃EVA材料,其极限氧指数达到28.6 %,垂直燃烧测试达到V-0级,拉伸强度为6.4 MPa,断裂伸长率达592 %。热失重分析测试表明,阻燃EVA材料的热失重速率较纯EVA有明显下降;成炭率显著提高,阻燃EVA在800 ℃时残炭量为15 % ,纯EVA仅为0.2 %。通过扫描电子显微镜对残炭形貌进行表征,以及对氧指数测试前后的阻燃EVA材料的红外图谱分析,表明EMPZR与APP在EVA中具有协效阻燃作用。  相似文献   

2.
采用低密度聚乙烯/乙烯-醋酸乙烯/三元乙丙橡胶(PE-LD/EVA/EPDM)共混物为电缆护套料的基材,分别以复配的氢氧化镁/氢氧化铝[Mg(OH)2/Al(OH)3]和单组分的Mg(OH)2为阻燃体系,研究了这两种阻燃体系对材料的阻燃性能和力学性能的影响。结果表明,随着Mg(OH)2/Al(OH)3比例的增大,材料的拉伸强度和极限氧指数增加,但断裂伸长率不断下降;在以Mg(OH)2为阻燃剂的体系中,材料的极限氧指数与Mg(OH)2的添加量成正比,而拉伸强度和断裂伸长率与其成反比,当Mg(OH)2的添加量在40~50份时,材料的极限氧指数能够达到29%以上,力学性能也优于Mg(OH)2/Al(OH)3体系阻燃的材料。  相似文献   

3.
分别采用三聚氰胺氰尿酸盐(MCA)、微胶囊红磷(MCP)以及氢氧化镁[Mg(OH)2]等与膨胀型阻燃剂PNP进行复配,研究了不同阻燃剂及其配比对低密度聚乙烯/乙烯-醋酸乙烯酯(PE-LD/EVA)共混物的阻燃和力学性能的影响。结果表明,在PE-LD/EVA为70/30的基体树脂中,当复合阻燃剂的含量为35%时,PNP/MCA的最佳配比为3/2,阻燃材料的极限氧指数为30.8%;PNP/MCA/MCP的最佳比例为24/16/4,阻燃材料极限氧指数为32.3%;PNP/MCA/MCP/Mg(OH)2的最佳比例为24/16/4/22,阻燃材料的极限氧指数为30.9%,垂直燃烧达到UL 94V-0级,拉伸强度为11.1MPa,断裂伸长率为80.6%。  相似文献   

4.
采用氧化铝(Al2O3)为导热填料、氢氧化镁[Mg(OH)2]为阻燃填料,以低密度聚乙烯(PE-LD)和乙烯醋酸乙烯共聚物(EVA)为基体树脂制备导热阻燃复合材料。通过导热性能测试、燃烧行为表征(极限氧指数和垂直燃烧测试)以及热重分析研究了PE LD/EVA/Al2O3/Mg(OH)2复合材料的导热性能、阻燃性能及热稳定性。结果表明,含有50份Al2O3及50份Mg(OH)2的复合材料,在PE-LD/EVA质量比为1/1时,热导率可达到1.21 W/m·K;材料的阻燃性能及热稳定性都随 EVA 含量的增加而增大,极限氧指数从27.0 % 提高到31.5 %,UL 94 垂直燃烧从无等级提高到V-0级,残炭率从46.5 %提高到57.7 %。  相似文献   

5.
采用一种新型含磷硅高分子阻燃剂(EMPZR)与聚磷酸铵(APP)、多聚磷酸密胺(MPP)复配成膨胀型阻燃剂(IFR),并对聚丙烯(PP)进行阻燃。当APP/MPP/EMPZR质量比为15/10/15时,所制得的复合材料的氧指数达到33.0 %,垂直燃烧达到UL 94 V 0级;与纯PP相比,拉伸强度、弯曲强度和冲击强度都没有下降;热失重分析表明,阻燃PP材料在600 ℃时的残炭量为21.14 %,成炭率显著提高;扫描电镜对残炭形貌的表征以及氧指数测试前后阻燃PP材料的红外图谱分析证实了EMPZR与APP、MPP在PP中有良好的协效阻燃作用。  相似文献   

6.
以乙烯-醋酸乙烯共聚物(EVA)/丁腈橡胶(NBR)为主体,氢氧化镁[Mg(OH)2)]和红磷(RP)为阻燃剂制备了无卤阻燃EVA/NBR复合材料,通过力学性能测试、热重分析以及燃烧行为表征(极限氧指数和锥形量热分析)研究了交联剂过氧化二异丙苯(DCP)以及马来酸酐接枝乙烯-醋酸乙烯共聚物(EVA-g-MAH)对EVA/NBR复合材料的力学性能、热稳定性和阻燃性能的影响。结果表明,含有10份相容剂EVA-g-MAH的交联材料,其拉伸强度可达到17.4 MPa,断裂伸长率可达到1236 %;材料的热分解温度从321.6 ℃提高到327.0 ℃,残炭量从10 %提高到了32.1 %;极限氧指数达到33.5 %且热释放速率峰值从941 kW/m2降到了690 kW/m2;通过扫描电子显微镜对复合材料的断面形貌进行了观察分析,发现材料断裂表面填料分散均匀。  相似文献   

7.
通过添加不同比例的煤矸石构筑环境友好型阻燃材料类水滑石(LDHs),X射线衍射结果显示LDHs结构完整。以乙烯-乙酸乙烯共聚物(EVA)为基体树脂,LDHs为复配阻燃剂制备EVA/LDHs复合材料。采用极限氧指数仪、锥形量热仪、烟密度测试仪等研究了复合材料的燃烧性能和抑烟性能,并探讨了相应的阻燃及抑烟作用机理。结果表明:EVA3[n(Mg2+)∶n(Al3+)为3∶1]的极限氧指数最高,达到28.30%;与纯EVA相比,EVA/LDHs复合材料的热释放速率、质量损失、烟生成速率均显著降低,表现出良好的阻燃性能;在点火和未点火情况下,复合材料均体现出良好的抑烟性能。  相似文献   

8.
采用低密度聚乙烯/乙烯-醋酸乙烯(PE-LD/EVA)为电缆料的主体基材,氢氧化镁[Mg(OH)2]为主阻燃剂,研究了乙烯-辛烯共聚物(POE)和有机蒙脱土(OMMT)对电缆料力学性能和阻燃性能的影响;并利用γ射线交联技术,探讨了辐射剂量对材料力学性能和阻燃性能的影响。结果表明,随着POE用量的增加,材料的拉伸强度和断裂伸长率增加,但硬度降低;OMMT的添加量为4份时,其与Mg(OH)2可以产生最佳的协同效应,改善了材料的力学性能和阻燃性能;当辐照剂量在90~100 kGy时,PE-LD/EVA/Mg(OH)2/OMMT=50/50/60/4的共混体系的综合性能达到比较理想的水平,其极限氧指数超过32 %,拉伸强度为11 MPa,断裂伸长率超过900 %。  相似文献   

9.
刘玲 《中国塑料》2005,19(6):91-93
采用线形低密度聚乙烯/乙烯-醋酸乙烯共聚物作为复合材料主体,表面处理过的氢氧化镁(Mg(OH)2)为主阻燃剂,以微胶囊化红磷和自制硅类阻燃剂为核心的复合阻燃剂为阻燃增效剂,重点探讨了Mg(OH)2和复合阻燃剂的阻燃效果。结果表明,Mg(OH)2与复合阻燃剂并用具有良好的协同效应,当Mg(OH)2用量40份,复合阻燃剂5~7份时,可获得较高的氧指数,垂直燃烧试验通过FV0级,且材料抗静电能力提高,力学性能、加工性能较好。  相似文献   

10.
以氢氧化镁[Mg(OH)2]和微胶囊红磷(MRP)为阻燃剂制备了无卤阻燃乙烯-醋酸乙烯共聚物(EVA)复合材料。通过极限氧指数、热失重分析和力学性能研究了硅酸盐纳米短纤维 (SNF) 以及马来酸酐接枝乙烯-醋酸乙烯共聚物(EVA-g-MAH)的加入对EVA阻燃性能和力学性能的影响,并通过扫描电子显微镜对其断面形貌和残炭表面形貌进行了观察和分析。结果表明,加入适量的EVA-g-MAH可以提高复合材料的极限氧指数和力学性能,加入12份的EVA-g-MAH后,材料的拉伸强度可达到10.2 MPa,断裂伸长率达到521 %,极限氧指数为39%,垂直燃烧达到V-0级别;加入适量的SNF后,可以显著提高复合材料的拉伸强度,当添加20份的SNF后,复合材料各性能最优,拉伸强度为12.3 MPa,断裂伸长率为210 %,极限氧指数为38%,垂直燃烧达到V-0级别。  相似文献   

11.
将有机蒙脱土(OMMT)和水滑石(LDH)分别与膨胀阻燃剂(IFR)构成阻燃体系,对长玻纤增强聚丙烯(LGFPP)复合材料进行阻燃改性,通过极限氧指数(LOI)和锥形量热仪(CONE)测试,对比研究了两种体系阻燃LGFPP的阻燃性能及阻燃机理。结果表明:当OMMT质量分数为2%时,复合材料的LOI达到最大值24.2%,且垂直燃烧达到了UL-94 V-0级;当LDH质量分数为1%时,LOI达到最大值23.3%,而垂直燃烧等级仍为V-1级。以炭层阻隔的IFR/OMMT体系比以稀释阻燃的IFR/LDH体系更加有效地改善LGFPP的阻燃性能。  相似文献   

12.
膨胀型阻燃体系阻燃LDPE性能的研究   总被引:2,自引:1,他引:1  
比较了Ⅰ型聚磷酸铵(n>30)和Ⅱ型聚磷酸铵(n>1000)的基本性质及其阻燃低密度聚乙烯复合材料的力学性能和阻燃性能,研究表明:聚磷酸铵(APP)提高了复合材料的氧指数LOI,延缓复合材料的分解,但会造成复合材料力学性能的下降,这一点不因APP种类而改变。然而,聚磷酸铵的表面改性会改善APP在LDPE中的分散,提高二者的相容性,有利于复合材料力学性能的提高。  相似文献   

13.
研究了季戊四醇磷酸酯三聚氰胺盐微胶囊化的多聚磷酸铵(KDIFR)、三聚氰胺-甲醛树脂微胶囊化的多聚磷酸铵(MAPP)和多聚磷酸铵(APP) 3种膨胀型阻燃剂,及引入硼、铝元素对膨胀型阻燃环氧树脂(EP)阻燃性能的影响,采用极限氧指数法和水平燃烧法测试材料的燃烧性能。结果表明,3种阻燃剂中APP的阻燃效果最好,当APP/EP为0.3(质量比,下同)时,其极限氧指数为32.2 %,达到难燃级水平;在EP/APP中引入铝元素或硼元素可使阻燃效果提高,硼、铝共存时阻燃效果更加突出,加入APP总量0.8 %的硼酸铝可使EP/APP的自熄时间由48 s降为24 s;热分析结果表明,APP热分解吸热恰与EP的热降解产物燃烧放热相匹配,这是使EP/APP的阻燃性能提高的主要原因;在EP/APP中引入硼和铝元素可明显促进EP/APP成炭,起到协同阻燃作用。  相似文献   

14.
利用含磷三嗪环低聚物(PMPT)及其复合阻燃剂制备阻燃聚丙烯(PP),探讨了PMPT和多聚磷酸胺/季戊四醇(APP/PER)/PMPT的用量对阻燃PP极限氧指数、燃烧参数的影响,并用扫描电子显微镜观察了剩余炭层的微观形貌,推测了阻燃剂PMPT的阻燃机理.结果表明,随着阻燃剂PMPT用量的增加,阻燃PP的氧指数逐渐增大;APP,PER,PMPT三者有很好的协同阻燃作用;PMPT阻燃机理遵循凝聚相阻燃机理.  相似文献   

15.
陈先敏 《塑料工业》2014,42(9):109-112
研究了不同配比的红磷阻燃母料(RPM)与氢氧化镁(MH)协同阻燃高抗冲聚苯乙烯(HIPS)体系的阻燃性能和机械性能。并选取最佳红磷阻燃母料与氢氧化镁的配比,再分别与其他无卤阻燃剂如酚醛树脂、氧化锌、氰尿酸三聚氰胺盐、有机纳米蒙脱土复配来共同阻燃HIPS,并分别对其体系的机械性能和阻燃性能进行了研究。结果表明,在RPM/MH质量比为1,总质量分数为30%时,与7%的酚醛树脂或有机纳米蒙脱土复配,都可以使阻燃HIPS材料达到1.6 mm UL94的V-1级。  相似文献   

16.
17.
18.
氯溴代烷基磷酸酯阻燃剂的合成与阻燃性研究   总被引:1,自引:0,他引:1  
本文对新戊二醇、溴素、三氯氧磷和环氧乙烷等为原料合成了氯溴代烷基磷酸酯阻燃剂-3-溴-2,2-二甲基丙基-2-溴乙基-2-氯乙基磷酸酯(CBAP-912),探索了温度、时间、原料配比,催化剂用量等反应条件对产率的影响。用化学方法,FTIR、TG等方法对该合成产物的性能和结构进行了表征。并研究了该阻燃剂在不饱和聚酯树脂和聚氯乙烯中的阻燃性,结果表明其上有良好的阻燃性能。  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号