首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 147 毫秒
1.
Cryptogein belongs to a new family of 10-kDa proteins called elicitins. Elicitins are necrotic and signaling proteins secreted by Phytophthora spp. responsible for the incompatible reaction and systemic hypersensitive-like necroses of diverse plant species leading to resistance against fungal or bacterial plant pathogens. The solution structure of beta cryptogein from Phytophthora cryptogea fungus was determined by using multidimensional heteronuclear nuclear magnetic resonance spectroscopy. A set of 18 structures was calculated using 1360 NOE-derived distance restraints and 40 dihedral angle restraints obtained from 3JHNH alpha couplings. The RMS deviation from the mean structure is 0.87 +/- 0.14 A for backbone atoms and 1.34 +/- 0.14 A for all the non-hydrogen atoms of residues 2 to 98. The structure of beta cryptogein reveals a novel protein fold, with five helices and a double-stranded beta-sheet facing an omega-loop. One edge of the beta-sheet and the adjacent face of the omega-loop form a hydrophobic cavity. This cavity made of highly conserved residues represents a plausible binding site. Residue 13, which has been identified from directed mutagenesis and natural sequence comparison studies as a key amino acid involved in the differential control of necrosis, is surface exposed and could contribute to the binding to a ligand or a receptor. The solution structure is close to the X-ray structure, with slight differences lightly due to the crystal packing.  相似文献   

2.
Annexins are excellent models for studying the folding mechanisms of multidomain proteins because they have four-eight homologous helical domains with low identity in sequence but high similarity in folding. The structure of an isolated domain 1 of human annexin I has been determined by NMR spectroscopy. The sequential assignments of the 1H, 13C, and 15N resonances of the isolated domain 1 were established by multinuclear, multidimensional NMR spectroscopy. The solution structure of the isolated domain 1 was derived from 1,099 experimental NMR restraints using a hybrid distance geometry-simulated annealing protocol. The root mean square deviation of the ensemble of 20 refined conformers that represent the structure from the mean coordinate set derived from them was 0. 57 +/- 0.14 A and 1.11 +/- 0.19 A for the backbone atoms and all heavy atoms, respectively. The NMR structure of the isolated domain 1 could be superimposed with a root mean square deviation of 1.36 A for all backbone atoms with the corresponding part of the crystal structure of a truncated human annexin I containing all four domains, indicating that the structure of the isolated domain 1 is highly similar to that when it folded together with the other three domains. The result suggests that in contrast to isolated domain 2, which is largely unfolded in solution, isolated domain 1 constitutes an autonomous folding unit and interdomain interactions may play critical roles in the folding of annexin I.  相似文献   

3.
The three-dimensional solution structure of plastocyanin from Anabaena variabilis (A.v.PCu) has been determined by nuclear magnetic resonance spectroscopy. Sixty structures were calculated by distance geometry from 1141 distance restraints and 46 dihedral angle restraints. The distance geometry structures were optimized by simulated annealing and restrained energy minimization. The average rms deviation from the mean structure for the 20 structures with the lowest total energy is 1.25 A for the backbone atoms and 1.75 A for all heavy atoms. Overall, the global tertiary fold of A.v.PCu resembles those of other plastocyanins which have been structurally characterized by X-ray diffraction and NMR methods. This holds even though A.v.PCu is longer than any other known plastocyanins, contains far less invariant amino acid residues, and has an overall charge that differs considerably from those of other plastocyanins (+1 vs -9 +/- 1 at pH > or = 7). The most striking feature of the A.v. PCu structure is the absence of the beta-turn, formed at the remote site by residues (58)-(61) in most higher plant plastocyanins. The displacement caused by the absence of this turn is compensated for by an extension of the small helix [from Ala53(51) to Ser60(58) in A.v.PCu] found in other plastocyanins. Moreover, the extra residues of A.v.PCu from Pro77 to Asp79 form an appended loop. These two features allow A.v.PCu to retain almost the same global fold as observed in other plastocyanins. From a comparison with the structures of other plastocyanins it is concluded that the lack of negatively charged residues at the remote site, rather than the specific structure of A.v.PCu, is the main reason for the failure of the remote site of this plastocyanin to function as a significant electron transfer site.  相似文献   

4.
The three-dimensional structure of synthetic human neuropeptide Y in aqueous solution at pH 3.2 and 37 degrees C was determined from two-dimensional 1H NMR data recorded at 600 MHz. A restraint set consisting of 440 interproton distance restraints inferred from NOEs and 11 backbone and 4 side-chain dihedral angle restraints derived from spin-spin coupling constants was used as input for distance geometry calculations on DIANA and simulated annealing and restrained energy minimization in X-PLOR. The final set of 26 structures is well defined in the region of residues 11-36, with a mean pairwise rmsd of 0.51 A for the backbone heavy atoms (N, C alpha and C) and 1.34 A for all heavy atoms. Residues 13-36 form an amphipathic alpha-helix. The N-terminal 10 residues are poorly defined relative to the helical region, although some elements of local structure are apparent. At least one of the three prolines in the N-terminal region co-exists in both cis and trans conformations. An additional set of 24 distances was interpreted as intermolecular distances within a dimer. A combination of distance geometry and restrained simulated annealing yielded a model of the dimer having antiparallel packing of two helical units, whose hydrophobic faces form a well-defined core. Sedimentation equilibrium experiments confirm the observation that neuropeptide Y associates to form dimers and higher aggregates under the conditions of the NMR experiments. Our results therefore support the structural features reported for porcine neuropeptide Y [Cowley, D.J. et al. (1992) Eur. J. Biochem., 205, 1099-1106] rather than the 'aPP' fold described previously for human neuropeptide Y [Darbon, H. et al. (1992) Eur. J. Biochem., 209, 765-771].  相似文献   

5.
The solution structure of murine macrophage inflammatory protein-2 (MIP-2), a heparin-binding chemokine that is secreted in response to inflammatory stimuli, has been determined using two-dimensional homonuclear and heteronuclear NMR spectroscopy. Structure calculations were carried out by means of torsion-angle molecular dynamics using the program X-PLOR. The structure is based on a total of 2390 experimental restraints, comprising 2246 NOE-derived distance restraints, 44 distance restraints for 22 hydrogen bonds, and 100 torsion angle restraints. The structure is well-defined, with the backbone (N, Calpha, C) and heavy atom atomic rms distribution about the mean coordinates for residues 9-69 of the dimer being 0.57 +/- 0.16 A and 0.96 +/- 0.12 A, respectively. The N- and C-terminal residues (1-8 and 70-73, respectively) are disordered. The overall structure of the MIP-2 dimer is similar to that reported previously for the NMR structures of MGSA and IL-8 and consists of a six-stranded antiparallel beta-sheet (residue 25-29, 39-44, and 48-52) packed against two C-terminal antiparallel alpha-helices. A best fit superposition of the NMR structure of MIP-2 on the structures of MGSA, NAP-2, and the NMR and X-ray structures of IL-8 are 1.11, 1.02, 1.27, and 1.19 A, respectively, for the monomers, and 1.28, 1.10, 1.55, and 1.36 A, respectively, for the dimers (IL-8 residues 7-14 and 16-67, NAP-2 residues 25-84). At the tertiary level, the main differences between the MIP-2 solution structure and the IL-8, MGSA, and NAP-2 structures involve the N-terminal loop between residues 9-23 and the loops formed by residues 30-38 and residues 53-58. At the quaternary level, the difference between MIP-2 and IL-8, MGSA, or NAP-2 results from differing interhelical angles and separations.  相似文献   

6.
The three-dimensional solution structure of the 259-residue 30 kDa N-terminal domain of enzyme I (EIN) of the phosphoenolpyruvate:sugar phosphotransferase system of Escherichia coli has been determined by multidimensional nuclear magnetic resonance spectroscopy. Enzyme I, which is autophosphorylated by phosphoenolpyruvate, reversibly phosphorylates the phosphocarrier protein HPr, which in turn phosphorylates a group of membrane-associated proteins, known as enzymes II. To facilitate and confirm NH, 15N, and 13C assignments, extensive use was made of perdeuterated 15N- and 15N/13C-labeled protein to narrow line widths. Ninety-eight percent of the 1H, 15N, and 13C assignments for the backbone and first side chain atoms of protonated EIN were obtained using a combination of double and triple resonance correlation experiments. The structure determination was based on a total of 4251 experimental NMR restraints, and the precision of the coordinates for the final 50 simulated annealing structures is 0.79 +/- 0.18 A for the backbone atoms and 1.06 +/- 0.15 A for all atoms. The structure is ellipsoidal in shape, approximately 78 A long and 32 A wide, and comprises two domains: an alpha/beta domain (residues 1-20 and 148-230) consisting of six strands and three helices and an alpha-domain (residues 33-143) consisting of four helices. The two domains are connected by two linkers (residues 21-32 and 144-147), and in addition, at the C-terminus there is another helix which serves as a linker between the N- and C-terminal domains of intact enzyme I. A comparison with the recently solved X-ray structure of EIN [Liao, D.-I., Silverton, E., Seok, Y.-J., Lee, B. R., Peterkofsky, A., & Davies, D. R. (1996) Structure 4, 861-872] indicates that there are no significant differences between the solution and crystal structures within the errors of the coordinates. The active site His189 is located in a cleft at the junction of the alpha and alpha/beta domains and has a pKa of approximately 6.3. His189 has a trans conformation about chi1, a g+ conformation about chi2, and its Nepsilon2 atom accepts a hydrogen bond from the hydroxyl proton of Thr168. Since His189 is thought to be phosphorylated at the N epsilon2 position, its side chain conformation would have to change upon phosphorylation.  相似文献   

7.
The human oncoprotein p13MTCP1 is coded by the MTCP1 gene, a gene involved in chromosomal translocations associated with T-cell prolymphocytic leukemia, a rare form of human leukemia with a mature T-cell phenotype. The primary sequence of p13MTCP1 is highly and only homologous to that of p14TCL1, a product coded by the gene TCL1 which is also involved in T-cell prolymphocytic leukemia. These two proteins probably represent the first members of a new family of oncogenic proteins. We present the three-dimensional solution structure of the recombinant p13MTCP1 determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After proton resonance assignments, a total of 1253 distance restraints and 64 dihedral restraints were collected. The solution structure of p13MTCP1 is presented as a set of 20 DYANA structures. The rmsd values with respect to the mean structure for the backbone and all heavy atoms for the conformer family are 1.07 +/- 0.19 and 1.71 +/- 0.17 A, when the structured core of the protein (residues 11-103) is considered. The solution structure of p13MTCP1 consists of an orthogonal beta-barrel, composed of eight antiparallel beta-strands which present an original arrangement. The two beta-pleated loops which emerge from this barrel might constitute the interaction surface with a potential molecular partner.  相似文献   

8.
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha3 beta2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha3 beta2 interface. Here we describe the three-dimensional solution structure of MII determined using 2D 1H NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 A for the backbone atoms and 0.34 A for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha3beta2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.  相似文献   

9.
1H NMR resonances of the phage 434 Cro protein were assigned using standard 2D NMR methods, and its solution structure determined using 867 distance constraints in distance geometry (DIANA) calculations ultimately refined by restrained molecular dynamics (GROMOS). In the 20 best NMR structures, the average pairwise backbone and heavy atom RMSDs are 0.63 +/- 0.14 and 1.53 +/- 0.15 A, respectively, for the structurally well-defined residues 4-65. Residues 1-3 and 66-71 at the N- and C-termini are structurally disordered. The region 4-65 includes five alpha-helices and tight turns which define the hydrophobic core of the protein. The backbone and heavy atom RMSDs for residues 4-65 are 0.92 +/- 0.12 and 1.99 +/- 0.12 A, respectively, for the NMR versus the crystal structures, but there are significant differences in the side-chain conformations and solvent accessibilities for some core residues. Analytical ultracentrifugation experiments confirm that 434 Cro is monomeric even at the high NMR concentrations. 434 Cro folding under NMR solution conditions is two-state as indicated by coincident urea denaturation curves from circular dichroism and intrinsic fluorescence measurements. They yield values for 434 Cro stability which show good correspondence to the free energy for global unfolding determined by NMR hydrogen exchange measurements for the slowest exchanging amide protons.  相似文献   

10.
The solution-state structure of the recombinant archaeal histone rHFoB, from the mesophile Methanobacterium formicicum, has been determined by two- and three-dimensional (3D) proton homonuclear correlated nuclear magnetic resonance (NMR) methods. On the basis of 951 nuclear Overhauser effect (NOE)-derived distance restraints, rHFoB monomers form the histone fold and assemble into symmetric (rHFoB)2 dimers that have a structure consistent with assembly into archaeal nucleosomes. rHFoB exhibits approximately 78% sequence homology with rHMfB from the hyperthermophile Methanothermus fervidus, and the results obtained demonstrate that these two proteins have very similar 3D structures, with a root-mean-square deviation for backbone atoms of 0.65 +/- 0.13 A2. (rHFoB)2 dimers however unfold at lower temperatures and require a higher salt environment for stability than (rHMfB)2 dimers, and comparing the structures, we predict that these differences result from unfavorable surface-located ionic interactions and a larger, more solvent-accessible cavity adjacent to residue G36 in the hydrophobic core of (rHFoB)2.  相似文献   

11.
Human serum amyloid P component (SAP) is a normal plasma glycoprotein and the precursor of amyloid P component which is a universal constituent of the abnormal tissue deposits in amyloidosis. X-ray and neutron scattering data showed that pentameric or decameric ring structures for SAP in solution are readily distinguished. Further neutron data collection showed that SAP pentamers were reproducibly obtained in the presence of Ca2+ at pH 5.5 or in the presence of methyl 4,6-O-(1-carboxyethylidene)-beta-d-galactopyranoside (MObetaDG) and Ca2+ at pH 6.0 to 8.0, while SAP decamers were obtained in the presence of EDTA between pH 5.5 and 8.0. SAP pentamers have a mean X-ray RG of 3.99(+/-0.11) nm and a mean neutron RG of 3.69(+/-0.12) nm in 100% 2H2O. SAP decamers have a mean X-ray RG of 4.23(+/-0.12) nm and a mean neutron RG of 4.09(+/-0.14) nm in 100% 2H2O. The absorption coefficients of SAP pentamers and decamers differ by 10%. If we infer that the two alpha-helical A-faces are in contact with each other in the SAP decamer, the lack of structural change of the decamer with pH may be explained by the absence of His residues from the A-face of the SAP pentamer, and the change in absorption coefficients is compatible with the presence of Trp residues at this A-face. The rigid ring structure of pentameric SAP provided a test of scattering curves calculated from crystal structures. The only structural unknown is the orientation of the five chemically homogeneous oligosaccharide chains relative to the protein, but extended oligosaccharide structures were found to account for its scattering curve. X-ray scattering curves were best calculated using a hydrated structure, while neutron scattering curves were best calculated using an unhydrated structure. The outcome of these analyses was used to model the structure of decameric SAP. The evaluation of 640 structures for two SAP pentamers brought face-to-face to form SAP decamers gave better curve fits for structures in which the two A-faces were in contact with each other, in which it is likely that the two pentamers were out of alignment by a rotation of 36 degrees and the oligosaccharide chains were extended.  相似文献   

12.
The alpha/beta scorpion fold consisting of a short alpha-helix and beta-sheet is a structural motif common to scorpion toxins, insect defensins, and plant gamma-thionins that invariably contains three disulfides. CHABII is a two-disulfide derivative of the scorpion toxin charybdotoxin (ChTX), chemically synthesized by inserting two L-alpha-aminobutyric acids in place of the two half-cystine residues involved in the disulfide 13-33. This disulfide is one of the two disulfides which connect the alpha-helix to the beta-sheet. The solution structure of CHABII was determined at pH 6.3 and 5 degrees C using 2D NMR and simulated annealing from 513 distance and 46 dihedral angle constraints. The NMR structure of CHABII is well-defined as judged from the low value of the averaged backbone rms deviation between the 30 lowest energy structures and the energy-minimized mean structure ((rmsd) = 0.65 A for the entire sequence and 0.48 A for the segment 3-36). Analysis and comparison of the solution structures of CHABII and ChTX lead to the following conclusions: (i) the fold of CHABII is similar to that of ChTX as indicated by the low value of the averaged backbone atomic rms deviation between the 10 lowest energy solution structures of the two proteins (1.44 A); (ii) the packing of the hydrophobic core is well-preserved, underlying the critical structural role of the hydrophobic interactions even for such a small and cysteine-rich protein as ChTX.  相似文献   

13.
Lqh-8/6 is a minor fraction isolated from the venom of the scorpion Leiurus quinquestriatus hebraeus. Here we describe the purification, amino acid sequencing and solution structure determination by NMR and molecular modeling of this peptide. Lqh-8/6 is a small polypeptide (38 residues) which contains 8 half-cystines and is highly similar to another venom component, chlorotoxin. Standard homonuclear methods were used to sequentially assign the proton NMR spectra and to collect spatial restraints for structure determination. Two populations, identified early in the assignment step, are in slow interconversion on the NMR timescale. The two conformers were shown to originate from a cis/trans peptidyl-prolyl isomerization. Using a distance geometry program and simulated annealing protocol under the NMR restraints we obtained 10 final structures for the major conformation (trans isomer). None of the structures showed NOE violations larger than 0.05 nm, and the rmsd value relative to the mean structure (considering the main chain atoms in well-defined secondary structure) is 0.07 nm. The three-dimensional structure contains a short alpha-helix strapped on a small antiparallel beta-strand and an N-terminal extended fragment. The sequence/structure and structure/function relationships of the new scorpion toxin-like peptide are discussed in the context of the present structure determination. This toxin shows a stable, highly populated cis conformer of a peptidyl-prolyl peptide bond.  相似文献   

14.
The NMR solution structure of an immunoglobulin superfamily module of twitchin (Ig 18') has been determined and the kinetic and equilibrium folding behaviour characterised. Thirty molecular coordinates were calculated using a hybrid distance geometry-simulated annealing protocol based on 1207 distance and 48 dihedral restraints. The atomic rms distributions about the mean coordinate for the ensemble of structures is 0.55( +/- 0.09) A for backbone atoms and 1.10( +/- 0.08) A for all heavy atoms. The protein has a topology very similar to that of telokin and the titin Ig domains and thus it falls into the I set of the immunoglobulin superfamily. The close agreement between the predicted and observed structures of Ig 18' demonstrates clearly that the I set profile can be applied in the structure prediction of immunoglobulin-like domains of diverse modular proteins. Folding studies reveal that the protein has relatively low thermodynamic stability, deltaG(H2O)U-F = 4.0 kcal mol(-1) at physiological pH. Unfolding studies suggest that the protein has considerable kinetic stability, the half life of the unfolding is greater than 40 minutes in the absence of denaturant.  相似文献   

15.
Desmopressin (1-desamino-[DArg8]vasopressin, is a synthetic analogue of the neurohypophyseal peptide hormone vasopressin which has high antidiuretic and antibleeding potency. The structure of desmopressin has been determined in aqueous solution by two-dimensional NMR techniques and molecular dynamics simulations. Both standard and time-averaged distance restraints were used in structure calculations because of the inherent flexibility in small peptides. 21 models calculated with standard restraints were compared with structures refined with time-averaged distance restraints and were found to be good representatives of the conformational ensemble of desmopressin. The macrocyclic ring forms an inverse gamma-turn centered around Gln4. Residues 1 and 2, the disulphide bridge and the three-residue acyclic tail were found to be flexible in solution. Residues 4-6 in the ensemble of calculated structures contain essentially the same backbone conformation as in the crystal structure of pressinoic acid, the cyclic moiety of vasopressin, whereas residues 2-6 superimpose on the NMR-derived conformation of oxytocin bound to neurophysin. The results presented in this work suggest that, in addition to the differences in sequence between desmopressin and vasopressin, differences in conformational and dynamic properties between the two compounds explain their pharmacological differences.  相似文献   

16.
The structure of the 129-residue protein hen lysozyme has been determined in solution by two-dimensional 1H nuclear magnetic resonance methods. 1158 NOE distance restraints, and 68 phi and 24 chi 1 dihedral angle restraints were employed in conjunction with distance geometry and simulated annealing procedures. The overall C alpha root-mean-square deviation from the average for 16 calculated structures is 1.8(+/- 0.2) A, but excluding 14 residues in exposed disordered regions, this value reduces to 1.3(+/- 0.2) A. Regions of secondary structure, and the four alpha-helices in particular, are well defined (C alpha root-mean-square deviation 0.8(+/- 0.3) A for helices). The main-chain fold is closely similar to structures of the protein in the crystalline state. Furthermore, many of the internal side-chains are found in well-defined conformational states in the solution structures, and these correspond well with the conformational states found in the crystal. The general high level of definition of mainchain and many internal side-chains in the solution structures is reinforced by the results of an analysis of coupling constants and ring current shifts. Many side-chains on the surface, however, are highly disordered amongst the set of solution structures. In certain cases this disorder has been shown to be dynamic in origin by the examination of 3J alpha beta coupling constants.  相似文献   

17.
The solution structure of the major form of the reduced soluble fragment of rat microsomal cytochrome b5 has been solved through 1H-NMR spectroscopy. The protein contains 98 amino acids. Proton assignment was available for residues 1-94, except 90 [Guiles, R. D., Basus, V. J., Kuntz, I. D. & Waskell, L. (1992) Biochemistry 31, 11,365-11,375] and has been confirmed. From 1722 NOEs, of which 1203 were found to be meaningful, a family of 40 energy-minimized structures has been obtained with average backbone rmsd (for residues 5-89) of 0.078 +/- 0.018 nm and average target function of 0.0045 nm2, no distance violations being larger than 0.029 nm. The structure has been compared with the X-ray structure of the oxidized rat mitochondrial isoenzyme and with that of the highly similar bovine microsomal isoenzyme in the oxidized form. The analysis of the elements of secondary structure is instructive in terms of their stability and of their occurrence in related structures, and of the capability of NMR and X-ray spectroscopy to observe them. Some detailed structural variations are noticed among the solved structures of the various isoenzymes and between solid and solution. The structural features in solution of the residues proposed to be involved in protein-protein recognition are found to be largely conserved with respect to the solid state.  相似文献   

18.
The solution structure of a site-directed mutant of type-II human cellular retinoic acid binding protein (CRABPII) with Arg111 replaced by methionine (R111M) has been determined by NMR spectroscopy. The sequential assignments of the 1H and 15N resonances of apo-R111M were established by multinuclear multidimensional NMR. The solution structure was calculated from 2302 distance restraints and 77 phi dihedral restraints derived from the NMR data. The root-mean-square deviation of the ensemble of 28 refined conformers that represent the structure from the mean coordinate set derived from them was 0.54 +/- 0.26 and 0.98 +/- 0.23 A for the backbone atoms and all heavy atoms, respectively. The solution structure of apo-R111M is similar to that of wild-type apo-CRABPII. However, there are significant conformational differences between the two proteins, localized mainly to three segments (Leu19-Ala36, Glu73-Cys81, and Leu99-Pro105) clustered around the ligand entrance more than 17 A away from the point mutation. In apo-R111M, all the three segments move toward the center of the ligand entrance so that the opening of the ligand-binding pocket in apo-R111M is much smaller than that in wild-type apo-CRABPII. Furthermore, the ligand-binding pocket of apo-R111M, especially the ligand entrance, is much less flexible than that of apo-CRABPII. Surprisingly, apo-R111M is more similar to holo-CRABPII than to apo-CRABPII in both structure and dynamical properties. The conformational and dynamical changes caused by the mutation are similar to those induced by binding of RA, although the magnitudes of the changes caused by the mutation are smaller than those induced by binding of RA. The results suggest that Arg111 plays a critical role in determining the structure and dynamical properties of CRABPII.  相似文献   

19.
The solution structure of the CCR3-specific chemokine, eotaxin, has been determined by NMR spectroscopy. The quaternary structure of eotaxin was investigated by ultracentrifugation and NMR, and it was found to be in equilibrium between monomer and dimer under a wide range of conditions. At pH 相似文献   

20.
MTCP1 (for Mature-T-Cell Proliferation) is the first gene unequivocally identified in the group of uncommon leukemias with a mature phenotype. The three-dimensional solution structure of the human p8(MTCP1) protein encoded by the MTCP1 oncogene was determined by homonuclear proton two-dimensional NMR methods at 600 MHz. After sequence specific assignments, a total of 931 distance restraints and 57 dihedral restraints were collected. The location of the three previously unassigned disulfide bridges was determined from preliminary DIANA structures, using a statistical analysis of intercystinyl distances. The solution structure of p8(MTCP1) is presented as a set of 30 DIANA structures, further refined by restrained molecular dynamics using a simulated annealing protocol with the AMBER force field. The r.m.s.d. values with respect to the mean structure for the backbone and all heavy atoms for a family of 30 structures are 0.73(+/-0.28) and 1.17(+/-0.23) A, when the structured core of the protein (residues 5 to 63) is considered. The solution structure of p8(MTCP1) reveals an original scaffold consisting of three alpha helices, associated with a new cysteine motif. Two of the helices are covalently paired by two disulfide bridges, forming an alpha-hairpin which resembles an antiparallel coiled-coil. The third helix is oriented roughly parallel to the plane defined by the alpha-antiparallel motif and its axis forms an angle of approximately 60 degrees with respect to the main axis of this motif.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号