首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shaoyang Liu 《Fuel》2010,89(10):2735-2740
Efficient biodiesel conversion from waste cooking oil with high free fatty acids (FFAs) was achieved via a two-stage procedure (an acid-catalyzed esterification followed by an alkali-catalyzed transesterification) assisted by radio frequency (RF) heating. In the first stage, with only 8-min RF heating the acid number of the waste cooking oil was reduced from 68.2 to 1.64 mg KOH/g by reacting with 3.0% H2SO4 (w/w, based on oil) and 0.8:1 methanol (weight ratio to waste oil). Then, in the second stage, the esterification product (primarily consisting of triglycerides and fatty acid methyl esters) reacted with 0.91% NaOH (w/w, based on triglycerides) and 14.2:1 methanol (molar ratio to triglycerides) under RF heating for 5 min, and an overall conversion rate of 98.8 ± 0.1% was achieved. Response surface methodology was employed to evaluate the effects of RF heating time, H2SO4 dose and methanol/oil weight ratio on the acid-catalyzed esterification. A significant positive interaction between RF heating time and H2SO4 concentration on the esterification was observed.  相似文献   

2.
甲醇钠催化地沟油制备生物柴油研究   总被引:2,自引:0,他引:2  
赵华  李会鹏 《化工科技》2011,19(6):19-22
以浓硫酸为催化剂,高酸值地沟油与甲醇酯化反应降酸的最优工艺条件为:n(甲醇):n(地沟油)=9:1,m(浓硫酸):m(地沟油)=1.1%,反应温度60℃,反应时间5h.制备生物柴油的最优工艺条件为:以甲醇钠为催化剂,反应时间2h,反应温度65℃,n(甲醇):n(地沟油)=7:1,m(甲醇钠):m(地沟油)=0.8%.制...  相似文献   

3.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

4.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature.  相似文献   

5.
Biodiesel utilization has been rapidly growing worldwide as the prime alternative to petrodiesel due to a global rise in diesel fuel demand along with hazardous emissions during its thermochemical conversion. Although, several debatable issues including feedstock availability and price, fuel and food competition, changes in land use and greenhouse gas emission have been raised by using edible as well as inedible feedstocks for the production of biodiesel. However, non-crop feedstocks could be a promising alternative. In this article, waste cooking oils have been recommended as a suitable option for biodiesel production bearing in mind the current national situation. The important factors such as the quantity of waste cooking oil produced, crude oil and vegetable oil import expenses, high-speed diesel imports, waste management issues and environmental hazards are considered. Moreover, process simulation and operating cost evaluation of an acid catalyzed biodiesel production unit are also conducted. The simulation results show that the production cost of waste cooking oil-based biodiesel is about 0.66USD·L-1. We believe that the present overview would open new pathways and ideas for the development of biofuels from waste to energy approach in Pakistan.  相似文献   

6.
World energy crisis has become the foremost crucial topic in this new era. Unstable price of petroleum fuel in the world market and recent environmental concerns on gas emission during combustion have led to intensive search for alternative energy sources that are not only renewable but sustainable. Without doubt, one of the most important evolutions in the renewable energy sector is the development of biodiesel. Currently commercial biodiesel production is using methanol (non-renewable) as the main reactant to produce biodiesel due to its wide availability and low cost. However, biodiesel produced using methanol are not completely renewable as methanol can only be derived from petroleum fuel. Unfortunately, not much attention has been given on this issue. On the other hand, ethanol may emerge as a good solution to this problem as ethanol can be derived from renewable sources through fermentation process. The only constraint on the use of ethanol is its slow reaction rate in transesterification reaction and therefore resulted to energy inefficient biodiesel production process. Such limitations worsen if solid acid catalyst is used in the reaction. Thus, the aim of this present work is to introduce a simple mixed methanol-ethanol method to overcome these limitations and to produce biodiesel in a greener and sustainable manner. The effect of methanol to ethanol to oil molar ratio, reaction temperature, catalyst loading and reaction time towards biodiesel yield are discussed in detail. From this study, it was found that an optimum biodiesel yield of 81.4% can be attained at a relatively short reaction time of 1 h.  相似文献   

7.
In this study, the Transesterification Double Step Process (TDSP) for the production of biodiesel from vegetable oil was modified to yield a shorter reaction time and products with improved quality. TDSP consists in a two step transesterification procedure which starts with a basic catalysis, followed by an acidic catalysis. The process modifications included a reduction in the concentration of catalysts, a reduction in the reaction time of the first step and the direct mixing of methanol/acid solution, without cooling the system between the first and second step. A comparison between washed and unwashed biodiesel demonstrates that the final washing and drying procedure is necessary for satisfactory results. The products were analyzed by 1H-NMR and nineteen different biodiesel analyses specific for international quality certification. The modified procedure resulted in a high conversion index (97% for waste cooking oil and soybean oil and 98% for linseed oil) and high yield (87 ± 5% for waste cooking oil, 92 ± 3% for soybean and 93 ± 3% for linseed oil). The biodiesel produced by the modified TDSP met ASTM, EN ISO and ABNT standards before the addition of stabilizer.  相似文献   

8.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

9.
Yong Wang  Shun Ma  Lina Kuang  William W. Riley 《Fuel》2011,90(3):1036-1040
The use of surfactants and detergent fractionation to improve the cold flow properties of biodiesel from waste cooking oil (BWCO) was investigated. The effect of five types of surfactants, including sugar esters (S270 and S1570), silicone oil (TSA 750S), polyglycerol ester (LOP-120DP) and diesel conditioner (DDA) on the reduction of the cold filter plugging point (CFPP) of the BWCO, was evaluated, with the greatest reduction to the CFPP of the BWCO (from −10 °C to −16 °C) being was achieved by the addition of 0.02 wt% of polyglycerol ester (LOP-120P). Detergent fractionation of the BWCO was performed by first mixing partially crystallized biodiesel with a chilled detergent (sodium dodecylsulfate) solution accompanied by an electrolyte (magnesium sulfate), and then separating the mixture by centrifugation to obtain the BWCO liquid. An orthogonal experimental design was utilized to investigate the effects of the various parameters on detergent fractionation. The optimal parameters, as obtained by range analysis, were as follows: detergent loading 0.3 wt%, electrolyte loading 1.0 wt%, and water loading 150 wt%. The CFFP of the liquid biodiesel from waste cooking oil (LBWCO) was −17 °C with a yield of 73.1% when the detergent fractionation was performed under these conditions. A limited number of biodiesel physical and chemical properties were analyzed before and after the addition of surfactants and detergent fractionation.  相似文献   

10.
Biodiesel produced by the transesterification of vegetable oils (VOs) has recently become more attractive on account of its environmental and economical benefits. In this work, a heterogeneous catalyst system was developed for the production of biodiesel from used VOs using a continuous process. The free fatty acids (FFA) contained in the used VOs, which cause several severe problems in transesterification catalysis, were converted to fatty acid methyl esters (FAME) before the main biodiesel production process. The activities of several heterogeneous catalysts on the conversion of FFA were tested, with a WO3/ZrO2 catalyst finally being selected. A method for preparing pellet-type catalysts was also developed. The pellet-type WO3/ZrO2 catalyst showed highly active and durable catalytic activities in the continuous flow process. The steady state conversion of ca. 70% was obtained in a 140 h durability test. The acidic property and catalytic activity of WO3/ZrO2 were attributed to the oxidation state of tungsten.  相似文献   

11.
The aim of this work was to investigate the optimum conditions in biodiesel production from waste frying oil using two-step catalyzed process. In the first step, sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid and methanol in order to reduce the free fatty acid content to be approximate 0.5%. In the second step, the product from the first step was further reacted with methanol using potassium hydroxide as a catalyst. The Box-Behnken design of experiment was carried out using the MINITAB RELEASE 14, and the results were analyzed using response surface methodology. The optimum conditions for biodiesel production were obtained when using methanol to oil molar ratio of 6.1:1, 0.68 wt.% of sulfuric acid, at 51 °C with a reaction time of 60 min in the first step, followed by using molar ratio of methanol to product from the first step of 9.1:1, 1 wt.% KOH, at 55 °C with a reaction time of 60 min in the second step. The percentage of methyl ester in the obtained product was 90.56 ± 0.28%. In addition, the fuel properties of the produced biodiesel were in the acceptable ranges according to Thai standard for community biodiesel.  相似文献   

12.
Kinetic studies have been carried out on the esterification of free fatty acids (FFAs) in jatropha oil with methanol in the presence of sulphuric acid catalyst at 5 and 10 wt% concentrations relative to free fatty acids (0.4–0.8 wt% relative to oil) and methanol–FFA mole ratios ranging from 20:1 to 80:1. It has been found that a 60:1 methanol–FFA mole ratio and 5 wt% catalyst at 60°C and 500 rpm or above provided a final acid value lower than 1 mg KOH/g oil within 60 min. A kinetic model has been proposed with second‐order kinetics for both the forward and backward reactions. The effect of temperature on the reaction rate constants and equilibrium constant has been determined using Arrhenius and von't Hoff equations, respectively. The heat of reaction was found to be ?11.102 kJ/mol.  相似文献   

13.
Nalan zbay  Nuray Oktar  N. Alper Tapan 《Fuel》2008,87(10-11):1789-1798
Although WCO plays a crucial role for the economical production of biodiesel, free fatty acid (FFA) level in the nature of WCO cause saponification problems during transesterification. Acidic ion-exchange resins can be used to decrease WCO free fatty acid level. In this study, activities of resins (Amberlyst-15 (A-15), Amberlyst-35 (A-35), Amberlyst-16 (A-16) and Dowex HCR-W2) in direct FFA esterification were examined in the temperature range of 50–60 °C and the effect of catalyst amount (1–2 wt%) on FFA conversion was also analyzed. FFA conversion increased with increasing reaction temperature and catalyst amount. Order of catalytic activities was found as A-15 > A-35 > A-16 > Dowex HCR-W2. This was related to the size of average pore diameters and magnitude of BET surface area.  相似文献   

14.
The use of metakaolinite as a catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydroxylation to obtain the metakaolinite phase. Metakaolinite samples were characterized using X-ray diffraction, N2 adsorption-desorption, simultaneous thermo-gravimetric analyse/differential scanning calorimetry (TGA/DSC) experiments on the thermal decomposition of kaolinite and Fourier-transform infrared spectrometer (FTIR) analysis. Parameters related to the transesterification reaction, including temperature, time, the amount of catalyst and the molar ratio of waste cooking oil to methanol, were also investigated. The transesterification reaction produced biodiesel in a maximum yield of 95% under the following conditions: metakaolinite, 5 wt-% (relative to oil); molar ratio of oil to methanol, 1∶23; reaction temperature, 160°C; reaction time, 4 h. After eight consecutive reaction cycles, the metakaolinite can be recovered and reused after being washed and dried. The biodiesel thus obtained exhibited a viscosity of 5.4?mm2?s–1 and a density of 900.1 kg?m–3. The results showed that metakaolinite is a prominent, inexpensive, reusable and thermally stable catalyst for the transesterification of waste cooking oil.  相似文献   

15.
Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. Biodiesel production from WCO was studied in this paper through experimental investigation of reaction conditions such as methanol/oil molar ratio, alkaline catalyst amount, reaction time and reaction temperature which are deemed to have main impact on reaction conversion efficiency. Experiments have been performed to determine the optimum conditions for this transesterification process by orthogonal analysis of parameters in a four-factor and three-level test. The optimum experimental conditions, which were obtained from the orthogonal test, were methanol/oil molar ratio 9:1, with 1.0 wt.% sodium hydroxide, temperature of 50 °C and 90 min. Verified experiments showed methanol/oil molar ratio 6:1 was more suitable in the process, and under that condition WCO conversion efficiency led to 89.8% and the physical and chemical properties of biodiesel sample satisfied the requirement of relevant international standards. After the analysis main characteristics of biodiese sample, the impact of biodiesel/diesel blend fuels on an YC6M220G turbo-charge diesel engine exhaust emissions was evaluated compared with 0# diesel. The testing results show without any modification to diesel engine, under all conditions dynamical performance kept normal, and the B20, B50 blend fuels (include 20%, 50% crude biodiesel respectively) led to unsatisfactory emissions whilst the B′20 blend fuel (include 20% refined biodiesel) reduced significantly particles, HC and CO etc. emissions. For example CO, HC and particles were reduced by 18.6%, 26.7% and 20.58%, respectively.  相似文献   

16.
In this study, sulphuric acid (H2SO4) was used in the pretreatment of sludge palm oil for biodiesel production by an esterification process, followed by the basic catalyzed transesterification process. The purpose of the pretreatment process was to reduce the free fatty acids (FFA) content from high content FFA (> 23%) of sludge palm oil (SPO) to a minimum level for biodiesel production (> 2%). An acid catalyzed esterification process was carried out to evaluate the low content of FFA in the treated SPO with the effects of other parameters such as molar ratio of methanol to SPO (6:1-14:1), temperature (40-80 °C), reaction time (30-120 min) and stirrer speed (200-800 rpm). The results showed that the FFA of SPO was reduced from 23.2% to less than 2% FFA using 0.75% wt/wt of sulphuric acid with the molar ratio of methanol to oil of 8:1 for 60 min reaction time at 60 °C. The results on the transesterification with esterified SPO showed that the yield (ester) of biodiesel was 83.72% with the process conditions of molar ratio of methanol to SPO 10:1, reaction temperature 60 °C, reaction time 60 min, stirrer speed 400 rpm and KOH 1% (wt/wt). The biodiesel produced from the SPO was favorable as compared to the EN 14214 and ASTM D 6751 standard.  相似文献   

17.
M. Berrios  A. Martín 《Fuel》2007,86(15):2383-2388
The kinetics of the esterification of free fatty acids (FFA) in sunflower oil with methanol in the presence of sulphuric acid at concentrations of 5 and 10 wt% relative to free acids as catalyst and methanol/oleic acid mole ratios from 10:1 to 80:1 was studied. The experimental results were found to fit a first-order kinetic law for the forward reaction and a second-order one for the reverse reaction.The influence of temperature on the kinetic constants was determined by fitting the results to the Arrhenius equation. The energy of activation for the forward reaction decreased with increasing catalyst concentration from 50 745 to 44 559 J/mol.Based on the experimental results, a methanol/oleic acid mole ratio of 60:1, a catalyst (sulphuric acid) concentration of 5 wt% and a temperature of 60 °C provided a final acid value for the oil lower than 1 mg KOH/g oil within 120 min. This is a widely endorsed limit for efficient separation of glycerin and biodiesel during production of the latter.  相似文献   

18.
Waste cooking oil methyl ester (WCOME) was winterised at 1, 0, −1 and −2°C following a 4×2 factorial design with one replication per cell. The process was carried out by filtration and both the filtrate (solid phase) and the liquid phase were analysed by gas chromatography (GC), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Cold filter plugging point (CFPP) and calorific values were measured.Temperatures of 0 and −1°C in conjunction with the quickest cooling rate (0.1°C min−1) and 15-24 h of cooling gave the most successful results in terms of fuel properties.Improvements in the low temperature properties of the winterised fuel were reflected by a reduction of saturated fatty acid methyl esters (SFAME) in the composition by 1.5-6%, by a decrease in the CFPP values by 2-4°C and by a shift of the DSC high temperature melting peak (approx. 5°C) towards lower temperatures in comparison to the original fuel. Calorific values of the winterised WCOME did not significantly change and boiling temperatures increased (approx. 26%) in comparison to the non-winterised WCOME.  相似文献   

19.
为研究地沟油中的长链脂肪酸酯化反应动力学以及反应条件对反应速率的影响,以甲基磺酸催化高酸值地沟油与甲醇的酯化反应为研究体系,反应中甲醇被持续通入地沟油中,同时不断蒸出未反应完的甲醇与生成的水。测定地沟油与甲醇酯化反应速率常数,结果表明,甲基磺酸催化高酸值地沟油与甲醇的酯化反应为一级反应,反应活化能为76.06 kJ·mol-1,提高甲醇流量、催化剂用量和反应温度都能提高反应速率。  相似文献   

20.
Increased environmental awareness and depletion of resources are driving industry to develop alternative fuels from renewable sources that are environmentally more acceptable. Biodiesel is a non petroleum based fuel that consists of alkyl esters from transestrification of the refined/edible types of vegetable oils alcohol and alkaline catalysts can be used. These catalysts require anhydrous conditions and feed stocks with low levels of free fatty acids (FFAs). Inexpensive feed stocks are used in biodiesel production to reduce its cost and to get rid of waste oils in environmentally friendly way. These oils may contain high levels of FFAs so it cannot be directly used with the base catalysts currently employed. Acid esterification reduces the FFAs content to the desirable level. The major factors that affect the conversion efficiency of the process are molar ratio of alcohol/oil, amount of catalyst, reaction temperature, catalyst type and stirring speed according to reaction duration. For this study, we used a model acid produced by mixing pure oleic acid with mixed oil (50% sunflower + 50% soybean oil). Methanol was used in the experiments due to its low cost. The best conversion efficiency obtained was 96.6% for a molar ratio of 6:1 at a temperature of 60 °C, 2.5% H2SO4 and stirring speed of 300 rpm. Finally, different types of waste cooking oil from home and restaurants were used to study the conversion efficiency compared with optimum conditions calculated for model acid oil to be used in biodiesel production with low cost.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号