首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
Zhijuan Wang  Meiye Li  Junhua Yuan  Li Niu  Ari Ivaska 《Carbon》2007,45(10):2111-2115
Multi-walled carbon nanotube (MWCNT)/thionine/gold nanoparticle composites were prepared by binding gold nanoparticles to the surfaces of thionine-coated carbon nanotubes. TEM images show gold nanoparticles distributed uniformly on nanotube walls and ends. UV-Vis, Raman, FT-IR, and zeta potential measurements were used to examine the properties of the resulting products. The composites demonstrate significant electrocatalytic activity for oxygen reduction. Although only gold nanoparticles were investigated here, the method could be easily extended to attach other metallic nanoparticles to the sidewalls of carbon nanotubes.  相似文献   

3.
We report the synthesis of multi-walled carbon nanotubes coated with sulfated TiO2 (S-TiO2/MWCNTs) as a promising support for Pt catalyst in a direct ethanol fuel cell. Highly dispersed Pt nanoparticles were supported on the S-TiO2/MWCNT composites by NaBH4 reduction procedure (Pt-S-TiO2/MWCNTs). The presence and nature of the catalyst were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, high-resolution transmission electron microscopy. The size of the sulfated TiO2 product was about 8 nm, and that of the Pt nanoparticle on the S-TiO2/MWCNT composites was about 5 nm. The Pt-S-TiO2/MWCNTs were used to study the electrochemical ethanol oxidation reaction using cyclic voltammetry, chronoamperometry and impedance spectroscopy. The results show that Pt-S-TiO2/MWCNT catalysts show higher catalytic activity for ethanol oxidation compared with Pt supported on non-sulfated TiO2/MWCNT composites and commercial Pt/C catalysts.  相似文献   

4.
PtRu and Pt nanoparticles were deposited on the surface of multiwalled carbon nanotubes (MWCNTs) with the assistance of phosphomolybdic acid (PMo) by a one-pot hydrothermal reduction strategy. Transmission electron microscopy shows a high-density PtRu (or Pt) nanoparticles uniformly dispersed on the surface of the MWCNTs with an average diameter of 1.8 nm for PtRu nanoparticles and 2.4 nm for Pt nanoparticles. Moreover, the as-prepared PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts are highly electroactive for the electrochemical oxidation of methanol. Cyclic voltammograms show a high electrochemical surface area (ESA) and a large current density for methanol oxidation at the modified electrode by PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts. Electrochemical impedance spectroscopy reveals a high CO tolerance for PMo/PtRu/MWCNT and PMo/Pt/MWCNT electrocatalysts in the electrochemical catalysis of methanol oxidation. For comparison, PtRu/MWCNT and Pt/MWCNT electrocatalysts were prepared in control experiments without PMo. The results demonstrate that PtRu and Pt nanoparticles deposited on MWCNTs in the presence of PMo were superior to those on MWCNTs without PMo in several respects including: (1) a smaller size and a higher dispersion; (2) a higher ESA; (3) a larger current density for methanol oxidation; (4) a higher tolerance for CO poisoning.  相似文献   

5.
Poly(p‐phenylene benzobisoxazole)/multiwalled carbon nanotubes (PBO‐MWCNT) composites with different MWCNT compositions were prepared through in situ polymerization of PBO in the presence of carboxylated MWCNTs. The nanocomposite's structure, thermal and photophysical properties were investigated and compared with their blend counterparts (PBO/MWCNT) using Fourier transform infrared spectra, Raman spectra, Wide‐angle X‐ray diffraction, thermogravimetric analysis, UV‐vis absorption, and photoluminescence. The results showed that MWCNTs had a strong interaction with PBO through covalent bonding. The incorporation of MWCNTs increased the distance between two neighboring PBO chains and also improved the thermal resistance of PBO. The investigation of UV‐vis absorption and fluorescence emission spectra exhibited that in situ PBO‐MWCNT composites had a stronger absorbance and obvious trend of red‐shift compared with blend PBO/MWCNT composites for all compositions. This behavior can be attributed to the efficient energy transfer through forming conjugated bonding interactions in the PBO‐MWCNT composites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Zhijuan Wang  Qixian Zhang  Xiaoyu Xu  Li Niu 《Carbon》2008,46(13):1687-1692
Multiwalled carbon nanotube (MWCNT)/ionic liquid/gold nanoparticle hybrid materials have been prepared by a chemical route that involves functionalization of MWCNT with amine-terminated ionic liquids followed by deposition of Au. Transmission electron microscopy revealed well-distributed Au with a narrow size distribution centered around 3.3 nm. The identity of the hybrid material was confirmed through Raman and X-ray photoelectron spectroscopy. It showed good electrocatalytic behavior toward oxygen reduction, relative to glassy carbon electrode. The results indicate that modification of MWCNT with ionic liquids and Au could play an important role in increasing the electrocatalytic activity of MWCNT.  相似文献   

7.
Poly(N‐vinylcarbazole) (PVK) composites containing different concentrations of multiwalled carbon nanotube (MWCNT) were synthesized through the oxidative polymerization of N‐vinylcarbazole with ferric chloride. The synthesized composites were characterized using Fourier transform infrared spectroscopy, ultraviolet‐visible spectra, and thermogravimetric analysis. A honeycomb‐patterned film was fabricated by casting the PVK–MWCNT composite solution under humid conditions. The morphology of the honeycomb‐patterned films in the PVK–MWCNT polymer composites and the dependence of its pore diameter and pore height on MWCNT concentration were analyzed using scanning electron microscopy. The honeycomb‐patterned films were treated at 150, 250, 400, and 490°C to study the arrangement of MWCNTs in the patterned films and to measure the DC conductivity depending on the calcination temperature. DC conductivity of the patterned films was increased by increasing the concentration of MWCNT in the composites and in the increased pretreatment temperature. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
The polypropylene‐grafted multiwalled carbon nanotubes (PP‐MWCNTs) were produced from the reaction of PP containing the hydroxyl groups and MWCNTs having 2‐bromoisobutyryl groups. The PP‐MWCNTs had a significantly rougher surface than the original MWCNTs. PP‐MWCNTs had PP layers of thickness 10–15 nm on the outer walls of the MWCNTs. PP/PP‐MWCNT composites and PP/MWCNT composites were prepared by solution mixing in o‐xylene. Unlike PP/MWCNT composites, PP‐MWCNTs were homogeneously dispersed in the PP matrix. As a consequence, the thermal stability and conductivity of PP/PP‐MWCNT composites were dramatically improved even if only 1 wt % of PP‐MWNTs was added to the PP matrix. The good miscibility of PP and PP‐MWCNTs plays a critical role in the formation of the homogeneous composites and leads the high thermal stability and conductivity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
Hao Tong  Hu-Lin Li  Xiao-Gang Zhang 《Carbon》2007,45(12):2424-2432
A new method of synthesis of highly dispersed Pt nanoparticles with large catalytic surface area on multi-walled carbon nanotubes (MWCNTs) under high-intensity ultrasonic field was developed. The method, with low processing temperature at 25 °C, took only about 5 min. The surface characterization of MWCNTs was carried out by fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy methods. The electrochemical surface area and pore volume of MWCNTs were also examined. The result showed that functional groups of the MWCNTs which favored the high loading and high dispersion of particles and electrochemical surface area of MWCNTs were reinforced in the case of high-intensity ultrasonic field. The Pt/MWCNT catalysts were characterized by energy dispersion X-ray spectra analysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) measurements. The prepared Pt nanoparticles were uniformly dispersed on the MWCNT surface. The mean size of Pt particles was 3.4 ± 0.2 nm. The electrocatalytic properties of Pt/MWCNT composites and kinetic characterization for methanol electro-oxidation were investigated by cyclic voltammetry. The Pt/MWCNT catalysts prepared for 5 min in ultrasonic field present excellent electrochemical activities. The schematic of the reaction was also introduced.  相似文献   

10.
Polymer composites based on poly(methyl methacrylate) (PMMA)/carboxylic acid group functionalized multiwall carbon nanotubes (MWCNT) were prepared by the ex situ and in situ techniques with 0.05% loading by weight. Composite films were fabricated by solvent casting method. Electrical conductivity of the composites as well as of the neat PMMA polymer was measured in the temperature range 333 K to 423 K. Neat PMMA samples prepared by the same method showed complete insulating behavior. Ex situ technique leads to a lower value of percolation threshold. Infrared spectroscopy was used to analyze the effect of functionalization of MWCNT on the interfacial bonding of PMMA and MWCNT. Thermogravimetric analysis revealed that the maximum degradation temperature has been shifted to higher region for in situ composites compared to PMMA itself—and the ex situ composites indicated better thermal stability. X‐ray diffraction study of composites also indicates that in situ composites functionalization incorporated MWCNT particles in the polymer chain. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
The combined effect of oxygen and nitrogen functional groups on highly crystalline carbon supports like multiwalled carbon nanotubes (MWCNT) and MWCNT‐few layer graphene hybrid structures (MWCNT+FLG) have been investigated towards oxygen reduction reaction (ORR) performance and carbon corrosion durability in polymer electrolyte membrane fuel cell (PEMFC) applications. The pristine carbon supports were modified with oxygen and nitrogen functionalities by treating with concentrated mineral acids and subsequent nitrogen plasma treatment assisted with R.F. magnetron sputtering. Pt nanoparticles were dispersed over these chemically modified carbon supports by polyol reduction method. The physicochemical properties of as synthesized electrocatalysts were studied by different techniques such as XRD, TEM, FTIR, Raman and XPS. Electrochemical properties were investigated by cyclic voltammetry and linear sweep voltammetry in 0.1M HClO4 medium. Compared to commercial Pt/C catalysts, durability show ∼30 % enhancement for the as prepared electrocatalysts due to the presence of large amount of pyrrolic nitrogen and highly oriented graphitic nature of the catalyst supports. The ORR performance were comparable with Pt/C (TEC10E30E) in terms of MSA, 259, 270, 252 A g−1 for Pt/C, Pt/N‐f‐MWCNT, Pt/N‐f‐(MWCNT+FLG) respectively.  相似文献   

12.
A simple method to decorate multiwalled carbon nanotubes (MWCNTs) with Au, Ag and Cu nanoparticles is illustrated. The method consists in directly depositing the selected metals by thermal evaporation on the carbon nanotubes. Comparative measurements carried out on samples that differ in the quantity and type of the deposited metal, reveal that isolated discrete particles form on the nanotube outer wall for all three metals. The CNT-based composites have been investigated by scanning and transmission electron microscopy to determine the size, shape and distribution of the nanoparticles. The results indicate that the quantity of evaporated metal only affects the nanoparticle size and not the average particle density. Particle composition was determined by X-ray photoelectron spectroscopy study. The results are discussed in terms of metal nanoparticle–tube interactions, an important issue for the fundamental and practical applications of similar MWCNT based composites.  相似文献   

13.
N. Zhang  S. Zhang  Y. Gao  G. Yin 《Fuel Cells》2013,13(5):895-902
In this work, Pt nanoparticles are deposited on NbO2‐modified carbon composites and evaluated as promising direct methanol fuel cell (DMFC) electrocatalysts. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) indicate that Pt nanoparticles (about 2.5 nm) are uniformly dispersed on NbO2‐modified carbon composites. Electrochemical measurements show that the mass activity toward methanol electrooxidation on Pt/NbO2‐C is as high as 3.0 times that of conventional Pt/C. Meanwhile, the onset potential of CO oxidation is negatively shifted by about 46 mV as compared with that of Pt/C, which means that the synergistic effect between NbO2 and Pt facilitates the feasible removal of poisoning intermediate CO during methanol electrooxidation. X‐ray photoelectron spectroscopy (XPS) characterizations reveal the electron transfer from Nb to Pt, which suppress the poisoning CO adsorption on Pt nanoparticles and facilitate methanol electrooxidation. NbO2 nanoparticles facilitate methanol electrooxidation on Pt/C catalyst by synergistic effect and electronic effect, which represents a step in the right direction for the development of excellent fuel cell anode electrocatalysts.  相似文献   

14.
Guang-Wu Yang  Guo-Yu Gao  Guang-Yu Zhao  Hu-Lin Li   《Carbon》2007,45(15):3036-3041
Multi-walled carbon nanotubes (MWCNTs) were functionalized via π − π interaction with benzyl mercaptan. The subsequent bonding of thiol groups with Pt offered strong adhesion of Pt nanoparticles on MWCNT surface. Thermal treatment was introduced as the essential step of the catalyst preparation. The structure and morphology of the resulting Pt/MWCNT composite were characterized by transmission electron microscopy and X-ray diffraction, the results show that Pt nanoparticles were highly dispersed and effectively adhered on MWCNTs. The excellent electrocatalytic activity of the Pt/MWCNT composite for the oxidation of methanol was demonstrated by cyclic voltammetry.  相似文献   

15.
R. Zhou  R. Yue  F. Jiang  Y. Du  P. Yang  C. Wang  J. Xu 《Fuel Cells》2012,12(6):971-977
A Pt‐modified Au catalyst featured with novel layered structures and ultra‐low Pt loading has been designed and electrochemically fabricated on a glassy carbon (GC) electrode. SEM characterization suggests that as‐formed Pt/Au/GC electrode grows in a Stranski–Krastanov mode, resulting in a nearly ideal layered structure with Au at the inner layer and Pt at the outer layer. The electrocatalytic activity of the synthesized Pt/Au/GC electrode towards formic acid electrooxidation was studied, and comparative experiments with other modified electrodes (i.e., Pt/GC, Pt/Au, and Pt/Pt) were also conducted. As a result, the electrocatalytic activity of the outer‐layered Pt depends significantly on the intrinsic properties of the substrates. The prepared Pt/Au/GC electrode with Au nanoparticles modified GC as the substrate shows remarkable catalytic activity for the formic acid oxidation, much higher than that of its counterparts, Pt/GC, Pt/Au, and Pt/Pt electrodes. Additionally, the measured electrochemical impedance spectra indicate that the charge‐transfer resistance for formic acid electrooxidation on Pt/Au/GC electrode is smaller than that on other Pt modified electrodes.  相似文献   

16.
The CO oxidation activity of Pt deposited on Ta2O5/Ta was studied with various amounts of Au post-deposited on Pt/Ta2O5/Ta. For Pt nanoparticles with a mean size of 2–4 nm, an enhancement in the CO oxidation activity with increasing amount of post-deposited Au was found. The mixed Au–Pt nanoparticles with sizes in the range of 2–4 nm exhibited higher stability than the bare Au nanoparticles with a similar size range. In contrast to the results obtained with the Pt nanoparticles, the catalytic activity of a thicker Pt film gradually decreased with increasing amount of Au deposited. Based on the CO desorption experiments, it is suggested that the surface of the catalytically active Au–Pt bimetallic structures consists of both Au and Pt sites.  相似文献   

17.
High performance of electrocatalysts for direct methanol fuel cells was demonstrated by three-dimensional (3D) graphene (GR) decorated with platinum (Pt)–gold (Au) alloy nanoparticles (3D-GR/PtAu). The 3D-GR/PtAu composite with a morphology like a crumpled paper ball was synthesized from a colloidal mixture of GR and Pt–Au alloy nanoparticles with aerosol spray drying. The 3D-GR/PtAu had a high specific surface area and electrochemical surface area of up to 238 and 325 m2/g(Pt), respectively, and the electrocatalytic applications of the 3D-GR/PtAu were examined through methanol oxidation reactions. The 3D-GR/PtAu had the highest electrocatalytic activity for methanol oxidation reactions compared with commercial Pt–carbon black and Pt-GR. The 3D-GR/PtAu was also highly sensitive electrocatalytic activity in the methanol oxidation reaction compared with the 2D-GR/Pt–Au. Furthermore, the electrocatalytic activity of the 3D-GR/PtAu had the highest performance among the catalysts containing Pt, Au, and GR for the methanol oxidation reactions. The increased electrocatalytic activity is attributed to the high specific surface area of the 3D formation and the effective surface structure of the Pt–Au alloy nanoparticles.  相似文献   

18.
Core/shell composites of polyaniline (PANI) and Vulcan XC‐72 Carbon (VC), in which the carbon represents the core and PANI forms the shell, were synthesized by in situ chemical oxidation polymerization. Platinum (Pt) particles were then deposited on the PANI/VC composites by chemical reduction method. The highest conductivity is obtained when a mass ratio of PANI/VC equals to 0.28, as proved by Fourier transform infrared spectra. And it is also proved that there are some reactions happened between PANI and VC. Scanning electron microscope, transmission electron microscope, and X‐ray diffraction measurements were performed to analyze their structure and surface morphology. It has been observed that the Pt particles are smaller in size and more uniformly distributed on these composite supports than on pure VC supports, considered as a reference. Methanol oxidation performed on the electrode modified by such a composite catalyst has been measured by cyclic voltammogram focusing on the attenuation of methanol oxidation current after 200 cycles. The attenuation degree for the composite catalyst is only one‐third of the one measured for a simple Pt/VC catalyst. It is proved that the composite catalyst better resist carbon monoxide poisoning in comparison with the Pt/VC catalyst, which may be due to the synergetic effects between the composite support and the Pt catalyst. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
In-Su Park 《Electrochimica acta》2007,52(18):5599-5605
Pt-modified Au nanoparticles on carbon support were prepared and analyzed as electrocatalysts for methanol electro-oxidation. In this paper, a novel chemical strategy is described for the preparation and characterization of carbon-supported and Pt-modified Au nanoparticles, which were prepared by using a successive reduction process. After preparing Au colloid nanoparticles (∼3.5 nm diameter), Au nanoparticles were supported spontaneously on the surface of carbon black in the aqueous solution. Then a nanoscaled Pt layer was deposited on the surface of carbon-supported Au nanoparticles by the chemical reduction. The structural information and electrocatalytic activities of the Pt-modified Au nanoparticles were confirmed by transmission electron microscopy (TEM), X-ray diffractometry (XRD) and cyclic voltammetry (CV). The results indicate that carbon-supported Au nanoparticles were modified with the reduced Pt atoms selectively. The Pt-modified Au nanoparticles showed the higher electrocatalytic activity for methanol electro-oxidation reaction than the commercial one (Johnson-Matthey). The increased electrocatalytic activity might be attributed to the effective surface structure of Pt-modified Au nanoparticles, which have a high utilization of Pt for surface reaction of methanol electro-oxidation.  相似文献   

20.
Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNT‐COOH) and MWCNT‐graft‐poly(citric acid) (MWCNT‐g‐PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT‐g‐PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT‐g‐PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT‐g‐PCA hybrid materials (MWCNT‐g‐PCA‐EPN) and their application as nanocatalyst toward Heck reaction in different conditions was investigated. The catalytic activity of palladium ions supported by MWCNT‐g‐PCA hybrid materials (MWCNT‐g‐PCA‐PdCl2) toward Heck reactions is much more than for MWCNT‐g‐PCA‐EPN. Structure, characteristics and catalytic activity of synthesized systems was investigated using spectroscopy and microscopy methods. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号