首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to solve the problems of traditional plastic packaging materials like poor degradability and insufficient active packaging function, this study successfully designs and synthesizes tannic acid (TA)-titanium (Ti) dual network coated hydrotalcite-like layered clay (LDHs@TA-Ti) and catechol grafted chitosan (C-CS) based on the principle of mussel bionics. And a novel idea is first put forward to fabricate LDHs@TA-Ti/C-CS/polyvinyl alcohol (PVA) nanocomposite films by solution casting method. The result of infrared and thermal analysis indicate that strong interfacial interaction is formed in the nanocomposites, which leads to the limitation of molecular chain movement and the increase of glass transition temperature. Although the addition of LDHs@TA-Ti significantly increases the crystallization temperature, the crystallinity does not change significantly. The water resistance, UV barrier, tensile strength and antibacterial properties of the final nanocomposite films are improved significantly, and all the films show good transparency in the visible range. Especially when the addition amount of LDHs@TA-Ti reaches 1 wt%, compared with C-CS/PVA composite film, the UV (at 300 nm) barrier property and tensile strength are increased by 36.3% and 45.1% respectively. Therefore, LDHs@TA-Ti/C-CS/PVA nanocomposite films show great potential as environmentally friendly active packaging films or coatings in extending the shelf life of food products.  相似文献   

2.
Development of ecofriendly packaging materials is still a challenging area. Researchers are continuously working to improve the mechanical and barrier properties of the different polymers which are used in the packaging industry. Selection of reinforcement and matrix for any composite are based upon end use applications. The novelty of the work is development of fully biodegradable, flexible, lightweight biocomposite by reinforcing needle punched flexible nonwoven viscose fabric to the PVA solution. The effect of PVA concentration and areal density of viscose fabric on the properties of prepared composite is examined. The composite thus prepared is assessed in terms of mechanical, thermal, breathability, and UV blocking properties. The nonwoven viscose-PVA composite shows excellent improvement in tensile strength of 100% to 300% with respect to PVA film of equivalent concentration for two different areal densities of viscose fabric. The composite also exhibits improved thermal stability and UV blocking property with respect to parent components. However, a reduction in flexibility (with respect to PVA film) as well as breathability (with respect to viscose fabric) of the composite is observed. Based upon the improved performance of the viscose-PVA composite in terms of mechanical properties, UV and water vapor permeability, it seems that the composite has a strong potential for application in the packaging sector as a flexible as well as biodegradable composite.  相似文献   

3.
Biodegradable poly(ester)urethane (PU) elastomer‐based nanocomposite films incorporated with organically modified nanoclay were prepared with melt‐extrusion compounding followed by a casting film process. These films were intended for application as biodegradable food packaging films, with their enhanced gas barrier, mechanical, and thermal properties and good flexibility. From both X‐ray diffraction measurements and transmission electron microscopy observations, the coexistence of intercalated tactoids and exfoliated silicate layers in the compounded PU/clay nanocomposite films was confirmed. In addition, the morphology exhibited a clay dispersion state in the matrix and was influenced by the incorporated nanoclay content. The effects of the nanoclay loading level on the thermal, mechanical, and barrier properties of the compounded nanocomposites were also investigated. As a result, it was revealed that the addition of nanoclay up to a certain level resulted in a remarkable improvement in the thermal properties in terms of thermal stability and the degree of thermal shrinkage; mechanical properties, including dynamic storage modulus and tensile modulus; and oxygen/water‐vapor barrier properties of the nanocomposite films. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
采用延流法制备了香兰素(V)交联的壳聚糖/聚乙烯醇/蜗牛黏液(CS/PVA/SM)复合膜,并通过热重分析仪(TG)、扫描电子显微镜(SEM)和万能材料试验机等研究了不同CS/SM配比对复合膜光学性能、水蒸气和氧气阻隔能力、力学性能、热力学性能及生物降解性能等的影响。结果表明,CS/PVA/SM复合膜为可降解的亲水性薄膜,当CS溶液/SM溶液体积比为5/3时,复合膜性能优良,其抗氧化活性为87.51 %,其水蒸气透过率比纯CS膜降低了75.16 %,不透明度降低了87.74 %,拉伸强度提高了16.04 %,断裂伸长率提高了28.26倍;随着SM含量的增加,复合膜的热稳定性有所降低;CS溶液/SM溶液体积比为5/1、5/2和5/3时,复合膜表现出良好的相容性;SM的添加使复合膜具有很好的延展性和柔韧性,V的添加提高了复合膜的拉伸强度和抗氧化能力;所制备的CS/PVA/SM复合膜在食品包装领域中有潜在的应用前景。  相似文献   

5.
This study aims to prepare and examine the properties of poly(vinyl alcohol)/casein (PVA/CAS) based films reinforced with cellulose nanocrystals (NC), which can be presented as an alternative to petroleum-based polymer packaging materials. PVA/CAS and 0.5–1–3–5 wt% NC containing PVA/CAS biocomposite films were prepared by solution casting method. Afterward, the 1NC film, which exhibited the best mechanical properties, was crosslinked with various amounts of glyoxal. Structural, morphological (polarized optical microscope), mechanical (tensile), thermal (differential scanning calorimetry, thermogravimetric analysis), contact angle, and water vapor transmission rate (WVTR) properties of the samples were investigated. The 1NC film exhibited the highest tensile strength (TS) and elongation values in PVA/CAS/NC films, and its mechanical properties decreased due to agglomeration with increasing NC amount. As expected, crosslinking improved the TS. The thermal stability of the PVA/CAS film was generally improved with the addition of NC and crosslinking. The high WVTR value of the PVA/CAS film decreased with the addition of NC and the 1NC film presented the lowest value. Thanks to the complex structure formed as a result of crosslinking and the reduced free volume, the WVTR of the 1NC film has reduced. The results showed that PVA/CAS-based films with good mechanical properties and water vapor barrier are promising as packaging materials.  相似文献   

6.
Biodegradable polymer/clay nanocomposites have attracted tremendous attentions because of their excellent properties and ecofriendly advantages. In this article, a series of nanocomposite films were prepared by introducing of halloysite nanotubes (HTs) into chitosan (CS)/poly(vinyl alcohol) (PVA) matrix using the solution casting method, and the effect of HT as nanofillers on the properties of polymer/HT nanocomposites was explored. The results indicated that the tensile strength of CS/PVA/HT3 and elongation at break of CS/PVA/HT2 sharply increased by 39.72% and 26.14% in comparison with the pure CS/PVA film, respectively. The water resistance and thermal stability of polymer/HT nanocomposites were also improved compared with the pure CS/PVA film, but the optical property of the nanocomposite films was not affected by introducing HT into the CS/PVA matrix. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

7.
谢玉  王立梅  齐斌 《中国塑料》2022,36(3):58-63
以壳聚糖(CS)为基质材料,蒙脱土(MMT)为填料,采用戊二醛(GA)交联改性并结合溶液插层法制备了交联壳聚糖/蒙脱土(CS/GA/MMT)复合膜。通过扫描电子显微镜、X射线衍射仪、红外光谱仪及热重分析仪对复合膜的结构进行了表征,考察了MMT用量对复合膜的吸水性能、水蒸气阻隔性能和力学性能的影响。结果表明,交联改性CS可提高CS膜的耐水性,CS/GA膜的吸水率较CS膜降低了9.6 %;MMT可提高复合膜的耐水性、水蒸气阻隔性能、力学性能和热稳定性;当MMT的用量为CS质量的5 %时,复合膜的各项性能较好,吸水率、水蒸气透过率和断裂伸长率较CS膜分别降低了37.3 %、36.7 %和41.9 %,且拉伸强度提高了160.5 %。  相似文献   

8.
以玉米淀粉为基质,结合纳米Ti O2,通过超声分散采用流延法制备了可生物降解的淀粉/Ti O2纳米复合薄膜,研究了纳米Ti O2对薄膜拉伸性能、阻隔性能及抗菌活性的影响,采用扫描电子显微镜(SEM)、红外光谱仪(FTIR)和X射线衍射仪(XRD)对复合膜的微观形貌和结构进行了表征。结果表明,淀粉/Ti O2纳米复合膜中Ti O2与淀粉分子间存在缔合作用,含适量Ti O2的复合膜组分之间有良好的相容性,与淀粉膜相比,纳米复合膜的拉伸性能和水蒸气阻隔性能得到有效改善,含0.8%Ti O2(质量分数,下同)的纳米复合膜拉伸强度为7.54 MPa,比淀粉膜提高了53.9%,水蒸气透过系数为5.50×10-5 g/(mm·d),较淀粉膜降低了23.5%,该复合膜同时表现出较好的紫外线隔离性能及抗菌活性。  相似文献   

9.
Poly-(butylene adipate-co-terephthalate) (PBAT) is one of the most popular raw materials for degradable plastic films because of its good biodegradability, ductility, and processability. However, the application of this material is limited by its unsatisfactory water vapor barrier property. This study aims to improve the water vapor barrier and mechanical properties of PBAT films by introducing mica modified by ethylene-vinyl acetate copolymer waxes (EVA-mica). The EVA-mica nanosheets showed a more uniform dispersion in the PBAT films than the mica nanosheets. The PBAT/EVA-mica films containing 2% EVA-mica demonstrated outstanding crystallinity, water vapor barrier, and mechanical properties compared with the pure PBAT films. Results showed a 20.23% increase in crystallinity, an 80.09% reduction in water vapor permeability, a 26.82% increase in tensile strength, and a 9.10% increase in tear strength. The enhanced water vapor barrier and mechanical properties of the PBAT/EVA-mica nanocomposite films are favorable for their future application as biodegradable films.  相似文献   

10.
The rational design of food packaging films with good antimicrobial activity, antioxidant activity, and monitorability is of great importance in intelligent packaging. In this study, an active composite film was prepared by adding curcumin to a dialdehyde cellulose (DAC)/polyvinyl alcohol (PVA) matrix. It was found that the Cur/DAC/PVA composite film exhibited optimal tensile strength at 30°C. The tensile strength of the composite film control PVA/DAC film was observed to increase by 176% due to the affection of hydrogen bonding. Under the influence of curcumin, the UV barrier property and antioxidant activity of the composite film were significantly increased, and the ABTS+• was removed by 0.5Cur/DAC/PVA up to 88% at low curcumin content. The water solubility and water vapor permeability were both reduced to some degree. It was also observed that composite film displayed an inhibitory effect on the growth of Staphylococcus aureus bacteria. Meanwhile, the Ritger and Peppas release model was used to study the release control capability of curcumin. Furthermore, the Cur/DAC/PVA composite film demonstrated excellent color response to pH, which it they could be used for intelligent packaging with real-time visual monitoring.  相似文献   

11.
使用蛭石(VMT)作为填料,以可生物降解的聚对苯二甲酸-己二酸丁二醇酯(PBAT)作为基体,采用熔融-吹塑法制备出蛭石/聚对苯二甲酸-己二酸丁二醇酯(VMT/PBAT)复合薄膜,并通过添加聚苯乙烯马来酸酐共聚物(SMA)作为相容剂制备了VMT/PBAT/SMA复合薄膜。对纯PBAT薄膜、VMT/PBAT和VMT/PBAT/SMA复合薄膜的热性能、流变性能、水蒸汽阻隔性能、断面微观结构和力学性能进行了测试。结果表明,相比纯PBAT薄膜,蛭石的填充使VMT/PBAT复合薄膜的热稳定性降低,相容剂SMA的添加增强了VMT/PBAT/SMA复合薄膜的热稳定性;蛭石的添加使复合薄膜的结晶度降低了约2%。水蒸汽透过量测试表明,两种复合薄膜水蒸汽阻隔性能符合国家标准;VMT的添加使VMT/PBAT复合薄膜的拉伸强度和断裂伸长率降低,而添加相容剂SMA使VMT/PBAT/SMA复合薄膜的拉伸强度和断裂伸长率相比VMT/PBAT复合薄膜提高约10 %。  相似文献   

12.
“Chilled” meat is more nutritional, healthy and hygienic than the meat kept at ambient temperature. “Poly(propylene carbonate) (PPC) and poly(vinly alcohol) (PVA) were used to prepare biodegradable three‐layer PPC/PVA/PPC films with high barrier and tensile properties. The potential benefits of the developed films were also evaluated on the shelf life of chilled meat products. Compared to PPC film, using 20 wt % PVA as an intermediate layer in PPC/PVA/PPC film remarkably enhanced oxygen barrier performance at 0 and 50 RH % by about 500 times, tensile strength by about 8 times, and Young's modulus by nine times, but no beneficial effect on water vapor barrier performance has been observed. A new “sandwich” type of completely biodegradable material with high barrier was obtained. The application of PPC/PVA20/PPC film as the packaging material of chilled meat was effectively kept the total viable count (TVC) and total volatile basic nitrogen (TVB‐N) to acceptable levels in chilled meats until 19th day of storage at 4°C, however, the spoilage occurred within 11th and 14th days of refrigerated storage in term of TVC and TVB‐N, respectively, in the chilled meats packed with only PPC. Herein, we report that PPC/PVA/PPC three‐layer film can be a promising well‐defined biodegradable material with excellent potential in chilled meat packaging. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41871.  相似文献   

13.
Blends of plasticized casein (CA) and poly(vinyl alcohol) (PVA) at various ratios were prepared using the solution‐casting method. The prepared blend solutions were cast onto polystyrene petri plates and bend films were obtained. The characterization of films was performed using Fourier transform infrared spectroscopy, tensile testing, thermogravimetric analysis, contact angle measurements and water vapour permeability. According to spectroscopic analysis, there were interactions between the CA and PVA molecules. The tensile test results showed that the tensile strength of CA increased with increasing PVA content. The flexibility of plasticized CA film increased with the incorporation of PVA. The thermal stability and water vapour barrier properties of plasticized CA improved on blending with PVA. As a result, it was seen that blend films were successfully produced using plasticized CA and PVA with potential for use in biodegradable packaging applications. © 2019 Society of Chemical Industry  相似文献   

14.
Cling films and single-use plastics are difficult to recycle and cause major environmental pollution, leading to an increase in microplastics in nature. To overcome this issue, biodegradable films are being explored more extensively. Seaweed is gaining prominence in the food packaging sector since it is beneficial in all aspects. Two fractions of Indian brown seaweed Sargassum wightii, biopolymer (sulfated polysaccharide [SP]) as base material and nanofillers (cellulose nanocrystals [CNC]) as reinforced filler are employed to develop a sustainable cling film for food packaging. This cellulose filler can be isolated from solid seaweed biomass after the polysaccharide extraction and converted into nanoform using the response surfaces method (RSM) to maximize the yield of CNC. The objective of this research is to construct seaweed-based biodegradable nanocomposite films and to examine their improved properties. It exhibited a gradual decrease in water absorption and water vapor permeability (WVP), along with better wettability, mechanical, and antioxidant properties, and thermal analysis compared with the control SP film. The degradation rates of the films were analyzed using the soil-burial method. According to the results obtained, it is suggested that CNC can be utilized as a functional filler to improve the qualities of seaweed-based cling films.  相似文献   

15.
In this study, interaction and compatibility between sugar‐beet pulp (SBP) and polyvinyl alcohol (PVA) in blend films was assessed. Film‐forming dispersions of different ratios of SBP to PVA (100/0, 75/25, 50/50, and 25/75) were cast at room temperature. The effects of adding PVA to SBP on the resulting film's physical, mechanical and barrier properties and thermal stability were investigated. X‐ray diffraction and environmental scanning electron microscopy (ESEM) were used to characterize the structure and morphology of the composites. When PVA was also added to the composite films, the films became softer, less rigid and more stretchable than pure SBP films. The addition of PVA gave significantly greater elongation at break (12.45%) and lower water vapor permeability (1.55 × 10?10 g s?1 m?1 Pa?1), but tensile strength did not markedly change, remaining around 59.68 MPa. Thermogravimetric analysis also showed that SBP/PVA film had better thermal stability than SBP film. The ESEM results showed that the compatibility of SBP50/PVA50 was better than those of other composite films. These results suggest that when taking all the studied variables into account, composite films formulated with 50% PVA are most suitable for various packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41354.  相似文献   

16.
Flexible organic light emitting diodes (FOLEDSs) require a barrier layer with transparency, thermal stability, and flame retardance to prevent water from inducing the corrosion of electrode and ultimately deterioration. Herein, HPS spheres were incorporated into the vinylidene chloride-methyl acrylate (VDC-MA) matrix to enhance the water vapor barrier property, thermostability, and anti-glare effect. Scanning electron microscopy showed that HPS spheres were more compatible with VM (89.86-10.14) by presenting better water vapor barrier property rather than with VM (92.38-7.62). The anti-glare effect of composite film was improved with HPS spheres, while the transparency still maintained over 80%. Thermogravimetric analysis showed that the weight loss still maintained over 50% with the incorporation of HPS spheres, indicating significant improvement compared with control VDC-MA films. Our research supplies an effective approach to prepare transparent and flame retardant hybrid films with enhanced water vapor barrier, thermostability, and anti-glare properties, which is promising in the encapsulation of FOLEDSs and other electronics areas.  相似文献   

17.
For the application of single‐layer food packaging films with improved barrier properties, an attempt was made to prepare ethylene‐vinyl alcohol (EVOH) copolymer‐based nanocomposite films by incorporation of organically modified montmorillonite nanoclays via a two‐step mixing process and solvent cast method. The highly intercalated tactoids coexisted with exfoliated clay nanosheets, and the extent of intercalation and exfoliation depended significantly on the level of clay loadings, which were confirmed from both XRD measurements and TEM observations. It was revealed that the inclusion of nanoclay up to an appropriate level of content resulted in a remarkable enhancement in the thermal, mechanical (tensile strength/modulus), optical, and barrier properties of the prepared EVOH/clay nanocomposite films. However, excess clay loadings gave rise to a reduction in the tensile properties (strength/modulus/elongation) and optical transparency due to the formation of clay tactoids with a larger domain size. With the addition of only 3 wt % clay, the oxygen and water vapor barrier performances of the nanocomposite films were substantially improved by 59 and 90%, respectively, compared to the performances of the neat EVOH film. In addition, the presence of clay nanosheets in the EVOH matrix was found to significantly suppress the moisture‐derived deterioration in the oxygen barrier performance, implying the feasibility of applying the nanocomposite films to single‐layer food packaging films. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40289.  相似文献   

18.
As public awareness about climate change grows, there is an increase in the research on bioplastic packaging films. This is the first-ever scientific report on uniaxially stretched biobased-polybutylene succinate-co-adipate (BioPBSA) and talc (15 and 25 wt%) based blown film composites at different stretch ratios (SR). The water vapor barrier properties of BioPBSA+25%Talc film at SR 4 shows an improvement of 40% compared to its unstretched counterpart, while an overall improvement of 48% is observed compared to the unstretched BioPBSA film. The successful dispersion of talc in the BioPBSA matrix, the orientation of talc filler during stretching, and the polymer chains orientation are responsible for such improvement. Additionally, XRD analysis shows that during uniaxial stretching, the crystallinity of the films increases by up to 26% as a result of strain-induced crystallization, with BioPBSA+25%Talc at SR 4 having the highest crystallinity (≈75%). Furthermore, the inclusion of 25% talc in BioPBSA considerably enhances the tensile modulus by 246% compared to its unstretched counterpart. Hence biodegradable films with balanced barrier and tensile properties may be promising alternatives to petroleum-based plastic materials used in flexible packaging applications.  相似文献   

19.
Active and biodegradable materials have great potential in food packaging applications, improving the safety and quality of products. The objective of this study was to develop a new material based on buriti oil incorporated into a chitosan film. Different concentrations of buriti oil in dried films (2.1 g/m2, 10.4 g/m2, 20.8 g/m2, and 31.3 g/m2) were added into a chitosan matrix (41.7 g/m2). The chitosan/buriti oil films were characterized by water‐vapor barrier properties, total water‐soluble matter (TSM), tensile properties, thermogravimetric analysis, microstructure, microbial permeation properties, and biodegradation estimation. The higher oil concentration improved the water‐vapor barrier and the buriti oil acted largely as a plasticizer and increased the elongation at break, and decreased the tensile strength (TS) of chitosan films. The total water‐soluble matter of chitosan films decreased in function of the buriti oil concentration, but the biodegradation and thermal stability increased. The chitosan films presented a microbial barrier against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43210.  相似文献   

20.
As a renewable and biodegradable polymer, polylactide (PLA) has taken a foothold in the packaging industry. However, the thermomechanical and barrier properties of PLA-based films need to be improved to facilitate a wider adoption. To address this challenge, we examined the effect of talc reinforcement in composites based on PLA and a biodegradable polyester. Masterbatches of the polymers and talc were produced by melt compounding and processed by either injection-molding or film extrusion in a pilot-scale unit operating at 60–80 m/min. The effect of talc was investigated in relation to the morphological, thermal, mechanical, and barrier properties of the composites. Based on SEM-imaging, talc was found to increase the miscibility of PLA and the polyester while acting as a nucleating agent that improved PLA crystallinity. While this effect did not track with an increased mechanical strength, the composites with 3–4 wt% talc displayed a significantly higher barrier to water vapor. Compared to the neat polymer films, a reduction of water vapor transmission rate, by ~34–37%, was observed at 23°C/50% RH. Meanwhile, the systems loaded with 1 wt% talc showed a reduction in oxygen transmission rates, by up to 34%. Our results highlight the challenges and prospects of commercial PLA-based blends filled with talc from films extruded in pilot-scale units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号