首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The antioxidant properties of some single components and the total antioxidant activity of extra‐virgin olive oil have been evaluated by the oxygen radical absorbance capacity (ORAC) method. The total ORAC of the extra‐virgin olive oil was found to be positively correlated with the concentration of total polyphenols, which are important to the shelf life of the product. Among the single phenolic compounds studied, gallic acid showed a higher ORAC than caffeic acid and oleuropein, while among the derivates of oleuropein, hydroxytyrosol was found to be the most active compound among all the phenols studied. The total ORAC of commercial olive oils differed according to the concentration of total polyphenols. The total ORAC of extra‐virgin olive oil was constant during 1 year of storage in rational conditions, whereas it worsened dramatically in olive oil damaged by the lipase‐producing yeast Williopsis californica or by lipase from Pseudomonas spp. The study accomplished on the oily fraction of the fruits before harvesting demonstrated that the total ORAC of the oil of under‐ripe green olives is higher compared to that shown by mature fruits; therefore, through the choice of the harvesting time, it is possible to define also the future content of polyphenols of the oil. The total ORAC test, together with other analyses, can be considered as a qualitative parameter that can contribute to the expression of technological and health virtues of extra‐virgin olive oil.  相似文献   

2.
Phenolic compounds have a high importance in olive oil because of their effect on shelf life and sensory properties. This study reports on the HPLC profiles of the phenolic compounds of virgin olive oils obtained from Arbequina olives from the harvesting in a super‐intensive orchard under a linear irrigation system. In addition, phenolic content, carotenoid and chlorophyllic pigments, and oxidative stability were analyzed. Total phenol content and 3,4‐DHPEA‐EDA increased up to a maximum throughout the ripening process. The simple phenols tyrosol and hydroxytyrosol acetate increased throughout the ripening process, however, there was not found a clear trend in hydroxytyrosol content. Minor constituents such as vanillic acid and p‐coumaric acid increased up to a maximum and then decreased, since vanillin decreased progressively throughout the time of harvest. 3,4‐DHPEA‐EDA and lignans were present in considerable amounts in the studied samples, while oleuropein aglycone was present in a low amount. Total phenol content and oil stability followed the same trend throughout the study, so a very good correlation was established between them. Total secoiridoids and, specifically, 3,4‐DHPEA‐EDA seemed to be responsible for oil stability. The pigment content decreased during ripening, and not a positive correlation was found between pigments and oil stability. Practical applications : The results can be used to determine the best time for harvesting in order to obtain olive oils with different phenols and pigment contents. This is important for sensory characteristics of the olive oils and also for olive oil stability.  相似文献   

3.
The phenolic composition and antioxidant activity of several monovarietal extra virgin olive oils used as blenders for the production of Collina di Brindisi protected designation of origin (PDO) oil, produced between December 2008 and January 2009 using two‐phases or three‐phases extraction system, were evaluated and compared with other manufacturer products designated as PDO. Oils were taken from the most representative ones industrial oil mills in the PDO geographical area. The parameters assessed were free acidity, peroxide value, K232 and K270 indices, organoleptic characteristics, total phenolic content (TPC), phenolic profile, and antioxidant activity coefficient (AAC). The phenolic contents and profiles of the monovarietal oils showed remarkable differences with respect to PDO oils. The variables that exerted a major influence on phenols concentration were the maturity degree of olives (December>January), followed by the extraction system (two‐phase>three‐phase), and place of growing. The Pearson r correlation index showed that AAC was positively correlated with TPC, p‐coumarate, and 3,4‐DHPEA‐EA, and negatively correlated with peroxide value. Practical applications: The results provide detailed information about: (i) the phenolic composition and the AAC of several monovarietal extra virgin olive oils used as blenders for the production of a PDO oil; (ii) the impact of genetic variability, place of growing, olive maturity degree, and extraction technology on oil phenol compounds; and (iii) the relationships among each phenolic compound and AAC, and their potential utilization as analytical index of antioxidant activity. It is important to study the phenolic compounds and antioxidant activity of monovarietal extra virgin olive oils used to produce PDO oil and to compare with the relative PDO samples in order to define a possible analytical tool able to verify what is stated in the label for consumer information and protection.  相似文献   

4.
Numerous olive cultivars have been planted in China, mainly to reap the health benefits of olive oil. This study characterized the quality and investigated the antioxidant activity of olives harvested at three different maturation stages, defined by the skin color of the olives (black, purple, and green), from three newly introduced olive cultivars (Barnea, Manzanilla and Kadesh) grown in China. The oleic acid content of olives from all three olive cultivars decreased significantly during maturation, whereas the linoleic acid content increased. The highest content of total phenols was recorded in Manzanilla cultivar (284.94 mg kg−1), whereas the lowest was recorded in Kadesh cultivar (134.82 mg kg−1). In addition, a total of 13 individual phenolic compounds were obtained, and their concentrations were significantly influenced by the cultivar and maturity (P < 0.05). Secoiridoids were the main group of phenolic compounds, but their quantity decreased during maturation. The content of secoiridoids in the Manzanilla cultivar was significantly higher than that of the Barnea and Kadesh cultivars. In general, a significant decrease (P < 0.05) in the values of antioxidant activity and the contents of pigments, α-tocopherol, and squalene occurred during maturation. Furthermore, principal component analysis was used to classify the nine olive oil samples according to the cultivar and ripening degree.  相似文献   

5.
Phenolic compound distribution of Turkish olive cultivars and their matching olive oils together with the influence of growing region were investigated. One hundred and one samples of olives from 18 cultivars were collected during two crop years from west, south and south‐east regions of Turkey. The olives were processed to oils and both olive and olive oil samples were evaluated for their phenolic compound distribution. The results have shown that main phenolics of Turkish olives were tyrosol, oleuropein, p‐coumaric acid, verbascoside, luteolin 7‐O‐glucoside, rutin, trans cinnamic acid, luteolin, apigenin, cyanidin 3‐O‐glucoside and cyanidin 3‐O‐rutinoside. Oleuropein and trans cinnamic acid were present in higher amounts among all phenolics. Principal component analyses showed that the growing region did not have drastic effect on phenolic profile of olives. The major phenolic compounds of olive oils were tyrosol, syringic acid, p‐coumaric acid, luteolin‐7‐O‐glucoside, trans cinnamic acid, luteolin and apigenin. Luteolin is a predominant phenolic compound in almost all oil samples. Total phenol concentrations of Southeast Anatolian oils were found to be lower than those of the other regions.  相似文献   

6.
In recent years, phenolic acids have received considerable attention as they are essential to olive oil quality and nutritional properties. This study aims to validate a rapid and sensitive method based on ultra‐performance liquid chromatography/time‐of‐flight mass spectrometry (UPLC–TOF‐MS) for analyzing the phenolic acid content of olive oil and assessing its impact on virgin olive oil (VOO) sensory attributes. Once this method was validated, we used it to evaluate the phenolic acid composition of several Spanish monovarietal virgin olive oils in relation to nine different olive ripening stages. The results obtained confirm that the methodology developed in this study is valid for extracting and analyzing phenolic acids from VOO. The phenolic acid content of the virgin olive oils sampled was proven to be influenced by the type of cultivar and olive harvest date. Therefore, phenolic acids might be used as potential markers for olive oil cultivar or ripening stage. Finally, the data obtained indicate that the sensory properties of VOO may be differently affected by its phenolic acid content depending on the type of cultivar. Practical applications: The method validated in the present study – based on UPLC‐TOF‐MS – allows experts to assess the phenolic acid content of different VOO cultivars (varieties). This application will probably be very useful to the olive oil industry. The reason is that our study revealed that phenolic acids have an impact on the sensory quality of VOO, which is essential to consumer preferences and choice. In addition, there are phenolic acids that are only found in a particular variety of olive oil obtained from fruits at a specific ripening stage. Consequently, phenolic acids could be used as potential markers for olive oil variety and harvest time.  相似文献   

7.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

8.
The aim of the present work was to investigate the influence of fruit ripening on oil quality and volatile compounds in an attempt to establish an optimum harvesting time for Oueslati olives, the minor olive variety cultivated in Tunisia. Our results showed that many analytical parameters, i.e., peroxide value, UV absorbance at 232–270 nm, chlorophyll pigments, carotenoids and oleic acid contents decreased during ripening, whilst linolenic acid increased. Free acidity remained practically stable with a very slight rise at the highest maturity index. The volatile compounds emitted by the Oueslati olive oil were characterized and quantified by HS‐SPME‐GC‐EIMS. Twenty‐three volatile compounds were identified, mainly aldehydes, sesquiterpenes and esters. The results show variations in the volatile fractions and quality parameters of Oueslati extra virgin olive oil obtained at different olive‐ripening stages. Fifteen sesquiterpenes were identified for the first time in this cultivar, mainly hydrocarbon derivatives, but also oxygenated ones. On the basis of the quality parameters and volatile fractions studied, the best stage of Oueslati olive fruits for oil processing seems to be at ripeness index about 3.0. Indeed, these results suggested the possibility of using sesquiterpenes for olive authenticity and traceability and demonstrated that the volatile fractions can be used as indicators of the degree of ripening of the olives used to obtain the corresponding virgin olive oils.  相似文献   

9.
The aim of this study was to assess the effects of the dietary intake of extra virgin olive oil on the oxidative susceptibility of low density lipoproteins (LDL) isolated from the plasma of hyperlipidemic patients. Ten patients with combined hyperlipidemia (mean plasma cholesterol 281 mg/dL, triglycerides 283 mg/dL) consumed a low-fat, low-cholesterol diet, with olive oil (20 g/d) as the only added fat, with no drug or vitamin supplementation for 6 wk. Then they were asked to replace the olive oil they usually consumed with extra virgin olive oil for 4 wk. LDL were isolated at the beginning, and after the 4 wk of dietary treatment. LDL susceptibility to CuSO4-mediated oxidation was evaluated by measuring the extent of lipid peroxidation. We also determined fatty acid composition and vitamin E in plasma and LDL and plasma phenolic content. Extra virgin olive oil intake did not affect fatty acid composition of LDL but significantly reduced the copper-induced formation of LDL hydroperoxides and lipoperoxidation end products as well as the depletion of LDL linoleic and arachidonic acid. A significant increase in the lag phase of conjugated diene formation was observed after dietary treatment. These differences are statistically correlated with the increase in plasma phenolic content observed at the end of the treatment with extra virgin olive oil; they are not correlated with LDL fatty acid composition or vitamin E content, which both remained unmodified after the added fat change. This report suggests that the daily intake of extra virgin olive oil in hyperlipidemic patients could reduce the susceptibility of LDL to oxidation, not only because of its high monounsaturated fatty acid content but probably also because of the antioxidative activity of its phenolic compounds.  相似文献   

10.
Olives were collected from various districts of Turkey (North and South Aegean sub-region, Bursa-Akhisar, South East Anatolia region) harvested over seven (2001–2007) seasons. The aim of this study was to characterize the chemical profiles of the oils derived from single variety Turkish olives including Ayvalik, Memecik, Gemlik, Erkence, Nizip Yaglik and Uslu. The olive oils were extracted by super press and three phase centrifugation from early harvest olives. Chosen quality indices included free fatty acid content (FFA), peroxide value (PV) and spectrophotometric characteristics in the ultraviolet (UV) region. According to the FFA results, 46% (11 out of 24 samples) were classified as extra virgin olive oils; whereas using the results of PV and UV, over 83% (over 19 of the 24 samples) had the extra virgin olive oil classification. Other measured parameters included oil stability (oxidative stability, chlorophyll pigment, pheophytin-α), cistrans fatty acid composition and color index. Oxidative stability among oils differed whereas the cis–trans fatty acid values were within the national and international averages. Through the application of two multivariate statistical methods, Principal component and hierarchical analyses, early harvest virgin olive oil samples were classified according to the geographical locations categorized in terms of fatty acid profiles. Such statistical clustering gave rise to defined groups. These data provide evidence of the variation in virgin olive oil quality, especially early harvest and cistrans isomers of fatty acid profiles from the diverse agronomic conditions in the olive growing regions of Turkey.  相似文献   

11.
Activity of the polyphenol oxidase (PPO) from eggplant fruit (Solanum melongena L.) on phenolic compounds of an extra virgin olive oil (EVOO) was studied. In standardized reaction solutions, the eggplant PPO, isolated in the laboratory, depleted completely chlorogenic and caffeic acids, oleuropein, and verbascoside, while the levels of hydroxytyrosol reduced by half. Conversely, no activity of the PPO was observed on the gallic and protocatechuic acids nor on mono‐phenols, such as tyrosol and the p‐coumaric, o‐coumaric, and ferulic acids. PPO activity on phenols extracted from eggplant fruit and EVOO confirmed the enzyme substrate specificity and caused a significant decrease in the measure of total phenols and o‐diphenols. Similarly, PPO crude extract caused a significant decrease of polyphenols directly in the EVOO. Moreover, maximum degradation of EVOO polyphenols was observed when olive oil was homogenized with eggplant fruit pulp to form a cream‐like purée. In fact, immediately after the preparation, total phenols and o‐diphenols of the olive oil recovered from the eggplant‐oil purée were decreased by ~80% and 100% compared to those of the initial EVOO. As a consequence, the oxidative stability of the recovered oil was ~60% lower than that of the initial EVOO. In conclusion, in the preparation of vegetable preserves, a residual activity of phenol oxidase may adversely affect the quality and shelf life of the extra virgin olive oil used as covering.  相似文献   

12.
Phenolic compounds are useful markers to control olive oil technological processes, including the virgin olive oil (VOO)/water separation after olive oil extraction. In this investigation, VOO extracted from olives of cv. Coratina using a mild oil/water separator called the hydrocyclone sedimentation system (Hydroil) was compared with VOO obtained using a conventional vertical centrifuge separator (Cenoil), which is mostly used in the modern olive oil industry. Secoiridoid aglycones were selected, among phenolic compounds, as markers and analyzed using reversed‐phase liquid chromatography coupled to linear quadrupole ion‐trap mass spectrometry with electrospray ionization in the negative mode. VOO samples obtained using the Hydroil system were found to contain significantly higher levels of secoiridoid aglycones, compared to the Cenoyl‐type samples. In particular, the total content of the aglycones of decarboxymethyl oleuropein, decarboxymethyl ligstroside, ligstroside, and oleuropein, expressed in terms of oleuropein, was estimated as 35.40 ± 0.80 mg kg?1, compared to 8.06 ± 0.41 mg kg?1 in the Cenoil samples (n = 3). Since no significant difference in residual water (P < 0.05) was found between the two types of VOO samples, the higher amount of secoiridoids obtained for Hydroil‐type ones was explained by the lower extent of oxidation occurring during the mild oil/water separation achieved using the Hydroil system.  相似文献   

13.
Quality of virgin olive oil (VOO) depends on phenolic molecules content, which depends on the biochemical characteristics of olive fruits, namely endogenous enzymes. In order to ascertain the influence of olive fruit ripening degree on the phenol content, enzyme activities in olive fruits, and the quality of the corresponding oils were studied during Oueslati olive ripening. In fact, three enzymes were studied: peroxidase (POX) in olive seeds, polyphenoloxidase (PPO), and β-glucosidase (β-GL) in olive fruits mesocarp. Each enzyme showed specific trend: POX activity increased gradually until reaching a maximum (17.061 ± 0.101 U g−1 FW) at ripening index (RI) 3.6 and then decreased slowly at advanced ripening stage. However, the maximum of PPO activity (240.421 ± 0.949 U g−1 FW) was observed earlier at RI of 0.7. Concerning β-glucosidase activity, its maximal was 60.857 ± 1.105 U g−1 FW at RI 2.8, then, it decreased sharply to reach 17.096 ± 0.865 U g−1 FW at RI 3.9. A significant increase of total phenol content as well as the antioxidant activity were observed during Oueslati olive ripening. Moreover, phenolic profile indicated that appropriate harvesting date of Oueslati olives coincided with RI 3.9 given that highest content of most important individuals phenolic compounds responsible for the main VOO biological properties achieved on this date. Furthermore, phenols amount of Oueslati VOO was principally due to PPO enzyme activity as the increase in total phenols coincides with the decrease in PPO activity.  相似文献   

14.
The effect of cultivar and ripeness stage on the potential nutritional value of monovarietal extra virgin olive oils (MEVOOs) obtained from Cordovil, Carrasquinha, Verdeal, and Negrinha do Freixo cultivars was investigated. MEVOOs produced were characterized by high oleic acid (72–83%), tocopherol (182–530 mg/kg), and phenolic compounds (326–1110 mg/kg) content and by a similar polyphenolic profile. 1‐Penten‐3‐one was found to be the compound with the highest contribution for the aroma of the four MEVOO, related to bitter, pungent, and leaf attributes. MEVOO from Verdeal cultivar showed the best performance in terms of the composition: the highest yield of oil, the highest content of oleic acid, high tocopherol, polyphenol and sterol content, and the lowest content of linoleic acid. These characteristics give to these MEVOO not only a great oxidative stability but also interesting properties from the health point of view. MEVOO obtained with fruits at the maturity index of around 4 were in general richer in beneficial minor compounds. MEVOO produced were discriminated by variety and ripeness stage, using a stepwise linear discriminant analysis. This discrimination will in the future enable the prevention of adulteration of these monovarietal olive oils with specific nutritional composition with other olive oils. Practical implications: High‐quality MEVOOs have recently been introduced in the market, which for growers is a practical way to differentiate and increase the commercial value of extra virgin olive oil. The quantification of major and minor olive oil compounds in monovarietal olive oils represents an objective way of predicting the sensory characteristics, stability, and potential health benefits of the oils, as well as preventing their adulteration with other olive oils. This study will help in the selection of olive varieties during the maintenance or development of new olive orchards and also to select optimum harvest period for these varieties, in order to obtain MEVOOs with the maximum quality and health benefits for consumers.  相似文献   

15.
Phenolic compounds are of fundamental importance to the shelf life of virgin olive oils because of their antioxidative properties. In this paper, the evolution of simple and complex olive oil phenols during 18 mon of storage is studied by high-performance liquid chromatography (HPLC) analysis. The olive oils under examination were from various olive cultivars, harvested in two sectors in the same region at different stages of ripeness. The findings indicate that it is not the variety but rather the ripeness of the olives and the soil and climate that influence the phenol composition of virgin olive oil. In addition, a positive correlation was found between the age of the oils and the tyrosol to total phenols ratio. Lastly, gas chromatography-mass spectrometry analysis confirmed that the unidentified peaks detected by HPLC were of a phenolic nature.  相似文献   

16.
Ethanol is the alcoholic precursor of fatty acid ethyl esters (FAEEs) in virgin olive oil (VOO). Because of its miscibility, water addition during oil extraction may affect oil ethanol content and then, the FAEEs synthesis during oil storage. In this work, the effect of water addition on VOO ethanol content and composition is studied. Water addition at two extraction systems (two and three phases) is compared and for vertical centrifuge, water addition at different temperatures is assayed. Ethanol content, quality parameters, and healthy components are determined in the oils. Results indicate three phase system gives oils with a 25% lower ethanol content than two phases. Ethanol reduction because of water addition is more important for three phases system (≈14%). For vertical centrifugation, ethanol is lowered as water dose and temperature increase. In general, water addition for any of the extraction steps analyzed reduces the oil ethanol concentration but other aspects such as fruity intensity and phenol content are also lowered. Practical applications: Virgin olive oil final ethanol content, and then its FAEEs concentration, does not only depend on the health and conservation status of olives, but also on the extraction system used and the amount of water added to the extraction process. The knowledge of the impact on ethanol content of water addition during oil extraction can be useful for olive oil legislators in order to keep the approved limits of FAEEs or to modify them. For oil producers, results can help to reduce the oil ethanol content and then FAEEs synthesis during virgin olive oil storage.  相似文献   

17.
Several studies have suggested that the phenolic fraction plays an important role during storage and therefore in the shelf life of virgin olive oil. This investigation examines the effect of freezing olives (–18 °C) before processing into oil on the transfer of the phenolic compounds into the subsequent oil, and the consequential changes in oxidative stability. Oil samples obtained from frozen olives (24 h at –18 °C), crushed with and without preliminary thawing, were compared to a control sample; both oils were obtained using a two‐phase low‐scale mill. The oxidative stability in different samples was assessed in terms of primary and secondary oxidation products as measured by peroxide values and oxidative stability index times, respectively. The quality of the oil samples was also checked through the percentage of free acidity and the phenolic content. Phenols were determined by both spectrophotometric assays (total phenols and o‐diphenols) and HPLC‐DAD/MSD. The antiradical capacity of the phenolic fraction was determined by DPPH and ABTS spectrophotometric tests. These analyses showed that thawing of olives before oil extraction led to a significant loss of oxidative stability and phenols; in contrast, samples obtained from frozen olives that were not thawed before crushing showed qualitative characteristics similar to control samples.  相似文献   

18.
Herein, the influence of the ripeness of Tunisian Sayali olives on the chemical composition and sensory quality of virgin olive oils have been investigated, with a particular focus on minor metabolites. Towards this end, five samples (S1–S5) were produced from fruits at increasing stages of maturity and then analyzed. Quality indices (free acidity, peroxide value, specific extinction in UV, sensory characteristics) and composition in major (fatty acids) and minor compounds (squalene, pigments, tocopherols, phenolic compounds, volatile compounds), as well as oxidative stability, were evaluated. Significant variations for the most analytical parameters of Sayali samples were demonstrated, highlighting the impact of stage of ripening. In particular, at later stages of ripening a decreased tendency was seen in minor compounds that are able to inhibit lipid oxidation (tocopherols, carotenoids, squalene and polar phenolic compounds) and, as a consequence, in the oxidative stability value. Moreover, a higher intensity of positive sensory notes (fruity, bitter and pungent) characteristic of extra virgin olive oil were found for samples produced with less ripe olives. Finally, a deeper knowledge of the influence of this factor would be helpful to correctly manage the optimal fruit harvesting time for producers for this variety and to improve the marketing of extra virgin olive oils by using a promising secondary variety (with a high oxidative stability and an interesting fatty acid composition).  相似文献   

19.
Quality characteristics of extra-virgin olive oils depend on several factors. In order to study the effects of genotype and growing location on olive oil quality, olives from cv. Coratina, Nocellara, Ogliarola, and Peranzana, picked in four locations of the Apulia region (Italy), were crushed by a three-phase system to produce mono-cultivar extra virgin olive oils that were analyzed for acidity, peroxide value, spectrophotometric indices, total phenolic content, phenolic profile and antioxidant activity. The experimental data concerning peroxide value, spectrophotometric indices, phenolic content and profile and antioxidant activity showed great variability among the cultivars grown in the same location and also among the oils produced with olives of the same cultivar but grown in different locations. For each cultivar, no significant differences were found among locations in terms of acidity and ΔK whereas peroxide value, K232, and K270 differ significantly among locations for both Ogliarola and Peranzana cv. Concerning the phenolic content of Ogliarola cv., no differences were highlighted between the locations whereas the phenolic contents of Peranzana significantly changed as a function of the place of growing. On the basis of these results, the statistical multivariate analysis did not allow the classification into homogeneous groups neither of the oils belonging to the same cultivar nor of those obtained from olives picked in the same location.  相似文献   

20.
The time of exposure of olive pastes to air contact (TEOPAC) during malaxation was studied as a processing parameter that could be used to control endogenous oxidoreductases, such as polyphenoloxidase, peroxidase, and lipoxygenase, which affect virgin olive oil quality. Phenolic and volatile compounds were analyzed in the oils obtained using progressive TEOPAC at three ripening stages of olives. Multivariate statistical analysis was applied to the raw data. The phenolic concentration of virgin olive oil progressively decreased with increasing IEOPAC. On the contrary, a positive relationship was found with the concentration of several volatile compounds responsible for virgin olive oil aroma. The effect of TEOPAC, however, was strictly related to fruit ripening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号