首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV/H2O2氧化联合Ca(OH)2吸收同时脱硫脱硝   总被引:1,自引:0,他引:1       下载免费PDF全文
刘杨先  张军  王助良 《化工学报》2012,63(10):3277-3283
在小型紫外光-鼓泡床反应器中,对UV/H2O2氧化联合Ca(OH)2吸收同时脱除燃煤烟气中NO与SO2的主要影响因素[H2O2浓度、紫外光辐射强度、Ca(OH)2浓度、NO浓度、溶液温度、烟气流量以及SO2浓度]进行了考察。采用烟气分析仪和离子色谱仪分别对尾气中的NO2和液相阴离子作了检测分析。结果显示:在本文所有实验条件下,SO2均能实现完全脱除。随着H2O2浓度、紫外光辐射强度和Ca(OH)2浓度的增加,NO的脱除效率均呈现先大幅度增加后轻微变化的趋势。NO脱除效率随烟气流量和NO浓度的增加均有大幅度下降。随着溶液温度和SO2浓度的增加,NO脱除效率仅有微小的下降。离子色谱分析表明,反应产物主要是SO42-和NO3-,同时有少量的NO2-产生。尾气中未能检测到有害气体NO2。  相似文献   

2.
3.
A novel photochemical spray reactor is first developed and is used to remove Hg0 and simultaneously remove Hg0/SO2/NO from flue gas by ultraviolet (UV)/H2O2 process. The effects of several parameters (UV wavelength, UV power, H2O2 concentration, Hg0 inlet concentration, solution temperature, liquid–gas ratio, solution pH, SO2 concentration, NO concentration, and O2 concentration) on removal of Hg0 by UV/H2O2 process were investigated. Removal mechanism of Hg0 is proposed and simultaneous removal of Hg0, NO, and SO2 is also studied. The results show that the parameters, UV wavelength, UV power, H2O2 concentration, liquid–gas ratio, solution pH, and O2 concentration, have significant impact on removal of Hg0. However, the parameters, Hg0 inlet concentration, solution temperature, SO2 concentration, and NO concentration, only have small effect on removal of Hg0. Hg2+ is the final product of Hg0 removal, and Hg0 is mainly removed by oxidations of H2O2, ·OH, · O, O3, and photoexcitation of UV. © 2014 American Institute of Chemical Engineers AIChE J, 60: 2275–2285, 2014  相似文献   

4.
In this work, advanced oxidation removal of nitric oxide (NO) from flue gas by homogeneous Photo‐Fenton was investigated in a photochemical reactor and the effects of several influencing factors on NO removal were evaluated. The gas‐liquid reaction products were determined. The reaction pathways of NO removal are also preliminarily discussed. It was found that with the increase of Fe2+ concentration, NO removal efficiency first increased and then decreased. Increasing H2O2 concentration and UV radiation intensity greatly increased NO removal efficiency, but the growth rates gradually became smaller. NO removal efficiency greatly reduced with the increase of gas flow and NO concentration, and only slightly decreased with the increase of solution temperature, but significantly increased with the increase of initial solution pH value. The main anion product in the liquid phase was NO3. With respect to removal of NO using homogeneous Photo‐Fenton, ·OH oxidation was the main reaction pathway, and H2O2 oxidation was the secondary reaction pathway.  相似文献   

5.
The experiments were performed in a countercurrent packed column in a continuous mode to study the absorption of nitric oxide in sodium chlorite/urea solutions. Sodium chlorite mainly works as an agent to oxidize NO to NO2. A combined SO2/NO removal system was also tested. On the basis of high SO2 removal efficiency, the NO removal efficiencies under various experimental conditions were emphatically measured. Among the operating variables such as initial NaClO2 concentration, urea concentration, temperature and initial pH value, the pH value of the absorbing liquid was found to have a great impact on both NO removal efficiency and NO2 concentration. NO removal efficiency was increased with increasing NaClO2 concentration and temperature. Urea almost has no negative effect on NO removal efficiency, however it aids the abatement of NO2 greatly. The anions in the spent scrubbing liquor were analyzed by ion chromatography.  相似文献   

6.
H2 regeneration of an activated carbon supported vanadium and cobalt oxides (V2O5-CoO/AC) catalyst–sorbent used for flue gas SO2 removal is studied in this paper. Elemental sulfur is produced during the H2-regeneration when effluent gas of the regeneration is recycled back to the reactor. The regeneration conditions affect the regeneration efficiency and the elemental sulfur yield. The regeneration efficiency is the highest at 330 °C, with SO2 as the product. The production of elemental sulfur occurs at 350 °C and higher with the highest elemental sulfur yield of 9.8 mg-S/g-Cat. at 380 °C. A lower effluent gas recycle rate is beneficial to elemental sulfur production. Intermittent H2 feeding strategy can be used to control H2S concentration in the gas phase and increase the elemental sulfur yield. Two types of reactions occur in the regeneration, reduction of sulfuric acid to SO2 by AC and reduction of SO2 to elemental sulfur through Claus reaction. H2S is an intermediate, which is important for elemental sulfur formation and for conversion of CoO to CoS that catalyzes the Claus reaction. The catalyst–sorbent exhibits good stability in SO2 removal capacity and in elemental sulfur yield.  相似文献   

7.
Basic rules of NO oxidation by a Fe2+/H2O2/AA directional decomposition system were researched based on the technical background of flue gas NOx removal. Effects of gas‐liquid interfacial area, main gas, and solution parameters on NO oxidation efficiency (η) were analyzed. The results showed that adequate contact area was the precondition for high η by a Fe2+/H2O2/AA system. η decreased with the increase in NO concentration, which illustrated that this method would be efficient in oxidizing NO at a low concentration. η tended to decrease linearly with the growth in gas flow, however, the NO oxidation rate (v) rose with the increase in NO concentration and gas flow. η increased with the initial concentrations of H2O2 and Fe2+, but the amplitude decreased. Controlling the initial concentrations of H2O2 and Fe2+ to achieve reasonable synergies between generation rate and consumption rate of ·OH could weaken the invalid consumption of reactants. η increased with the increase in temperature in the range 30–60 °C, but it nearly did not change with temperature after 60 °C. This oxidation technology and the traditional wet flue gas desulphurization technology exhibited temperature synergy. Under typical pH of wet desulphurization, η and H2O2 consumption rate did not change obviously.  相似文献   

8.
SO_2对钙基吸收剂吸收NO的作用机理   总被引:1,自引:0,他引:1       下载免费PDF全文
针对低温条件下SO2对Ca(OH)2吸收NO的影响进行了实验研究,分析了烟气中O2和H2O对SO2促进Ca(OH)2吸收NO的影响。实验结果表明,当烟气不含SO2时,Ca(OH)2对NO基本无吸收作用;烟气中SO2的存在对NO吸收具有促进作用。H2O和O2对SO2促进NO吸收有显著影响;当烟气不含O2时,即使大量的SO2被吸收,NO吸收效率仍较低;只有SO2与O2和H2O共存才能促进NO吸收。脱硫产物CaSO3对NO无氧化作用;NO、H2O和SO2未在吸收剂表面产生可分解释放NO2的大分子中间配合物。分析认为在脱硫过程中产生了可以促进NO与O2反应的非稳定中间活性组分。  相似文献   

9.
Spray towers are widely used for controlling air pollution by gases such as SO2, CO2, NOx, and HCl. Results of sulfur dioxide absorption in a spray tower using solutions of 1 g L–1 and 2 g L–1 of hydrogen peroxide are reported. For comparison, a water and sodium hydroxide solution was also used for SO2 abatement. The results indicate that H2O2 may be an important alternative for SO2 removal in spray towers. A set of experimental removal efficiency data was obtained as a function of gas and liquid flow rates. Volumetric mass transfer coefficients (kga) were calculated and an experimental relationship among kga, gas, and liquid flow rates was proposed. As a final experiment, an oxidation process assisted by UV radiation using a 1 g L–1 solution of H2O2 was carried out to speed up the SO2 removal rate. The results obtained in this condition are similar to those achieved with a solution of 2 g L–1 H2O2.  相似文献   

10.
Catalytic oxidation of NO followed by simultaneous removal of SO2 and NO X with ammonia is a promising method for control of coal-fired flue gas pollutants. We investigated simultaneous absorption of SO2 and NO X in a packed column with ammonia, and found that SO2 and NO X could promote absorption with each other in the process of simultaneous removal SO2 and NO X . The removal efficiency of SO2 and NO X was, respectively, about 98% and 70.9% at pH 5.5, temperature 323.15 K, SO2 concentration 1,800×10?6, NO X concentration 400×10?6 and ${{m_{NO_2 } } \mathord{\left/ {\vphantom {{m_{NO_2 } } {m_{NO} }}} \right. \kern-0em} {m_{NO} }}$ in our experimental system. The experimental results also show that the formation of sulfite oxidized by reacting with dissolved NO2 and the molar ratio of sulfite to total sulfur is more than 0.8 in the solution. Accordingly, the energy consumption for sulfite oxidation would be greatly reduced in the process of simultaneous desulfurization and denitrification with ammonia.  相似文献   

11.
UV/H2O2氧化联合CaO吸收脱除NO的传质-反应动力学   总被引:3,自引:0,他引:3  
刘杨先  潘剑锋  刘勇 《化工学报》2013,64(3):1062-1068
在实验室规模的光化学反应器中,基于实验研究﹑动力学理论以及双膜理论,研究了UV/H2O2氧化联合CaO吸收(UV/H2O2-CaO工艺)脱除燃煤烟气中NO的传质-反应动力学。分析了NO吸收的传质-反应过程,明确了NO吸收过程的主要控制步骤和强化措施,测定了关键的动力学参数,推导了NO吸收过程的理论模型。结果表明:在实验范围内,NO吸收速率随着NO浓度的增加几乎呈线性增加。随着H2O2浓度和CaO浓度的增加,NO的吸收速率均呈现先增加后变缓的趋势。UV/H2O2-CaO工艺脱除NO是一个拟一级快速反应过程,强化气相主体扰动﹑增加气液接触面积和提高NO分压可有效提高NO的吸收速率。NO吸收速率方程的计算值和实验值具有较好的一致性。  相似文献   

12.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

13.
Gas effects on NO reduction by NH3 over sulfated CaO have been investigated in the presence of O2 at 700–850 °C. CO2 and SO2 have reversible negative effects on the catalytic activity of sulfated CaO. Although H2O alone has no obvious effect, it can depress the negative effects of CO2 and SO2. In the flue gas with CO2, SO2 and H2O co-existing, the sulfated CaO still catalyzed the NO reduction by NH3. The in situ DRTFTS of H2O adsorption over sulfated CaO indicated that H2O generated Br?nsted acid sites at high temperature, suggesting that CO2 and SO2 competed for only the molecularly adsorbed NH3 over Lewis acid sites with NO, without influencing the ammonia ions adsorbed over Br?nsted acid sites. Lewis acid sites shifting to Br?nsted acid sites by H2O adsorption at high temperature may explain the depression of the negative effect on NO reduction by CO2 and SO2.  相似文献   

14.
A novel silica–titania (SiO2–TiO2) nanocomposite has been developed to effectively capture elemental mercury (Hg0) under UV irradiation. Previous studies under room conditions showed over 99% Hg0 removal efficiency using this nanocomposite. In this work, the performance of the nanocomposite on Hg0 removal was tested in simulated coal-fired power plant flue gas, where water vapor concentration is much higher and various acid gases, such as HCl, SO2, and NOx, are present. Experiments were carried out in a fix-bed reactor operated at 135 °C with a baseline gas mixture containing 4% O2, 12% CO2, and 8% H2O balanced with N2. Results of Hg speciation data at the reactor outlet demonstrated that Hg0 was photocatalytically oxidized and captured on the nanocomposite. The removal efficiency of Hg0 was found to be significantly affected by the flue gas components. Increased water vapor concentration inhibited Hg0 capture, due to the competitive adsorption of water vapor. Both HCl and SO2 promoted the oxidation of Hg0 to Hg(II), resulting in higher removal efficiencies. NO was found to have a dramatic inhibitory effect on Hg0 removal, very likely due to the scavenging of hydroxyl radicals by NO. The effect of NO2 was found to be insignificant. Hg removal in flue gases simulating low rank coal combustion products was found to be less than that from high rank coals, possibly due to the higher H2O concentration and lower HCl and SO2 concentrations of the low rank coals. It is essential, however, to minimize the adverse effect of NO to improve the overall performance of the SiO2–TiO2 nanocomposite.  相似文献   

15.
A process of simultaneous desulfurization and denitrification of flue gas was conducted in this study. The flue gas containing 200 mg·m−3 NO, 1000–4000 mg·m−3 SO2, 3%–9% O2, and 10%–20% CO2 was first oxidized by O3 and then absorbed by ammonia in a bubbling reactor. Increasing the ammonia concentration or the SO2 content in flue gas can promote the absorption of NOX and extend the effective absorption time. On the contrary, both increasing the absorbent temperature or the O2 content shorten the effective absorption time of NOX. The change of solution pH had substantial influence on NOX absorption. In the presence of CO2, the NOX removal efficiency reached 89.2% when the absorbent temperature was raised to 60 °C, and the effective absorption time can be maintained for 8 h, which attribute to the buffering effect in the absorbent. Besides, both the addition of Na2S2O3 and urea can promote the NOX removal efficiency when the absorbent temperature is 25 °C, and the addition of Na2S2O3 had achieved better results. The advantage of adding Na2S2O3 became less evident at higher absorbent temperature and coexistence of CO2. In all experiments, SO2 removal efficiency was always above 99%, and it was basically not affected by the above factors.  相似文献   

16.
The potential of the sorbent-catalysts prepared from three low cost materials, i.e., the lime, fly ash and some industrial waste material containing iron oxide, have been investigated for simultaneous removal of SO2 and NO x from flue gas in the temperature range 700–850 °C. NH3 was chosen as the reducing agent for NO reduction in this study. Experimental results showed that SO2 and NO could be simultaneously removed efficiently in the absence of O2 at the temperature window of 700–800 °C. The effect of product layer generated from SO2 removal on NO removal was not obvious. NO removal efficiency was strongly inhibited by O2, which was attributed to the partial oxidation of NH3 to NO over the sorbent-catalysts in the presence of oxygen. Neither NO2 nor N2O by-product was detected both in the absence and presence of O2. Three routes were suggested to overcome the negative effect of O2. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

17.
《Fuel》2005,84(14-15):1968-1974
Removal of Hg0 vapor from the simulated coal combustion flue gases with a commercial activated carbon was investigated using H2S. This method is based on the reaction of H2S and Hg over the adsorbents. The Hg0 removal experiments were carried out in a conventional flow type packed bed reactor system in the temperature range of 80–150 °C using simulated flue gases having the composition of Hg0 (4.9 ppb), H2S (0–20 ppm), SO2 (0–487 ppm), CO2 (10%), H2O (0–15%), O2 (0–5%), N2 (balance gas). The following results were obtained: in the presence of both H2S and SO2, Hg removal was favored at lower temperatures (80–100 °C). At 150 °C, presence of O2 was indispensable for Hg0 removal from H2S–SO2 flue gas system. It is suggested that the partial oxidation of H2S with O2 to elemental sulfur (H2S+1/2O2=Sad+H2O) and the Clause reaction (SO2+2H2S=3Sad+2H2O) may contribute to the Hg0 removal over activated carbon by the following reaction: Sad+Hg=HgS. The formation of elemental sulfur on the activated carbon was confirmed by a visual observation.  相似文献   

18.
The effect of feeding rate of NaClO2 solution, inlet SO2 and NO concentration, [NaClO2]/[SO2+NO] molar ratio (η), L/G ratio and, solution pH on the simultaneous removal of SOx/NOx has been investigated in a wetted-wall column. Both SOx and NOx removal efficiencies are enhanced with the increasing feeding rate of NaClO2 solution and attain a steady state. NOx removal efficiency increases with increasing SO2 concentration, but SOx removal remains unaffected with increasing NO concentration. In an acidic medium, DeSOx and DeNOx efficiency increased with increasing [NaClO2]/[SO2+NOx] molar ratio and attained a steady state. NOx removal starts only after the complete removal of SOx. The excess of NaClO2 does not enhance NOx removal efficiency. Solution pH does not affect the DeSOx and DeNOx efficiency. The maximum SOx and NOx removal efficiencies achieved at the typical operating conditions of commercialized FGD processes are about 100 and 67%, respectively.  相似文献   

19.
Simultaneous sulfur dioxide (SO2) and nitrogen oxides (NOx) removal from flue gas can be achieved with high efficiency by microwave with potassium permanganate (KMnO4) over zeolite. The experimental results showed that the microwave reactor could be used to oxidation of SO2 to sulfate with the best desulfurization efficiency of 96.8% and oxidize NOx to nitrates with the best NOx removal efficiency of 98.4%. Microwave accentuates catalytic oxidation treatment, and microwave addition can increase the SO2 and NOx removal efficiency by 7.2% and 12.2% separately. The addition of zeolite to microwave potassium permanganate increases from 16.5% to 43.5% the microwave removal efficiency for SO2, and the NOx removal efficiency from 85.6% to 98.2%. The additional use of potassium permanganate to the microwave zeolite leads to the enhancement of SO2 removal efficiency up from 53.9% to 95%, and denitrification efficiency up from 85.6% to 98.2%. The optimal microwave power and empty bed residence time (EBRT) on simultaneous desulfurization and denitrification are 259 W and 0.357 s, respectively. SO2 and NOx were rapidly oxidized in microwave induced catalytic oxidation reaction using potassium permanganate with zeolite being the catalyst and microwave absorbent.  相似文献   

20.
介质阻挡放电中气体成分对NOx脱除的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
汪涛  孙保民  肖海平  杜旭  曾菊瑛  段二朋  饶甦 《化工学报》2012,63(11):3652-3659
利用介质阻挡放电(DBD)产生低温等离子体进行烟气的脱硝实验,研究了在乙烯存在的条件下,温度和其他烟气成分对NOx脱除率的影响。结果表明:随着温度的升高,NO脱除速率增快;模拟烟气中加入CO2,在能量密度较低时,CO2作为电负性分子会降低自由基的生成,导致NO的脱除率降低,随着能量密度的升高,CO2对NO脱除的影响减小;模拟烟气中加入水后可以产生更多的OH、HO2等自由基,促进NO的氧化;SO2的加入会与自由基O反应,使初始反应中O与C2H4的反应速率减弱,从而影响了NO的氧化速率,但O3、HO2等强氧化自由基会优先与NO反应,因此SO2的加入不会影响NO最终的脱除率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号