首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of iron oxides particles mixed in natural rubber (NR) or aged natural rubber (ANR) from Manihot glaziovii were investigated. IR spectroscopy showed that α-Fe2O3 inhibits or retards the thermal degradation (200°C) of ANR, but it does not inhibit or retard the thermal degradation of NR. A retardation effect is observed using iron (III) oxide in both ANR and NR. Using both oxides, longer autoxidation induction periods of ANR and NR are observed (150°C). The periods were extended for a higher content of rubber hydroperoxide concentration. The inhibition or retardation of autoxidation using Fe3O4 in both ANR and NR is not evident. We suggest an interaction between hydroxyl groups of hydroperoxide, mainly present in aged natural rubber, and the iron oxide surface.  相似文献   

2.
Nickel zinc ferrite (Ni-ZnFe2O4)-filled natural rubber (NR) composite was prepared at various loading of ferrite. The tensile properties included in this study were tensile strength, tensile modulus and elongation at break. The tensile strength and elongation at break of the composites increased up to 40 parts per hundred rubber (phr) of ferrite and then decreased at higher loading whereas the tensile modulus was increased gradually with increasing of ferrite loading. Scanning electron microscopy (SEM) was used to determine the wettability of filler in rubber matrix. From the observation, the increase of filler loading reduced the wettability of the filler. Thermal stability of the composites was conducted by using a thermogravimetry analyser (TGA). The incorporation of ferrite in NR composites enhanced the thermal stability of NR composites. The swelling test results indicate that the swelling percentage of the composites decreased by increasing of ferrite loading. The initial permeability, μi and quality factor, Q of magnetic properties of NR composites achieved maximum value at 60 phr of ferrite loading for frequency range between 5000–40,000 kHz. The maximum impedance, Z max of the NR composites was at the highest value at 80 phr ferrite loading for frequency range between 200–800 MHz.  相似文献   

3.
In the present work, we have explored the efficacy of bismuth (III) oxide (Bi2O3) loaded, calcium ion cross-linked solution cast sodium alginate composite films for radioprotective applications. Calcium ion cross-linking increased the water and chemical resistance, which further improved on introduction of Bi2O3 into the composites. The 40 wt% Bi2O3 loaded films showed good heat resistance with the peak degradation temperature reaching as high as 251°C. The Bi2O3 loaded composites showed enhanced tensile strength (TS) and Youngs modulus (YM). Compared to high-modulus polymers like epoxy, high-density polyethylene (HDPE) and poly (vinyl chloride) (PVC), these exhibit relatively greater extent of stretching before breaking. The γ-ray attenuation experiments showed that mass attenuation coefficients of the composites at various γ-ray energies increased with filler loading. These composites are effective in shielding γ-rays from radioactive sources like 137Cs, 22Na, 133Ba, and 60Co that are widely employed in several medical and industrial applications. The overall enhancement in thermal, mechanical, and radiation shielding characteristics of the composites may be attributed to the uniform distribution of the fillers in alginate matrix. These nontoxic sodium alginate/Bi2O3 composites can be used as soft and biodegradable radiation shields, which may be processed to wearable forms.  相似文献   

4.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Curing characteristics, tensile properties, morphological studies of tensile fractured surfaces using scanning electron microscopy (SEM), and the extent of rubber filler interactions of rattan‐powder‐filled natural rubber (NR) composites were investigated as a function of filler loading and silane coupling agent (CA). NR composites were prepared by the incorporation of rattan powder at filler loading range of 0–30 phr into a NR matrix with a laboratory size two roll mill. The results indicate that in the presence of silane CA, scorch time (ts2), and cure time (t90) of rattan‐powder‐filled NR composites were shorten, while, maximum torque (MH) increased compared with NR composites without silane CA. Tensile strength and tensile modulus of composites were enhanced whereas elongation at break reduced in the presence of silane CA mainly due to increase in rubber‐filler interaction. It is proven by SEM studies that the bonding between the filler and rubber matrix has improved. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Abstract

Cobalt ferrite (CoFe2O4) powders synthesised by sol–gel techniques were incorporated into natural rubber (NR) and polyurethane (PU) by two-roll milling at different loadings from 0 to 45 phr. In either NR or PU composites, the magnetisations were proportional to the CoFe2O4 loading, but the coercive field remained rather insensitive to the loading. The frequency response from 1 MHz to 1 GHz revealed that the real part of the magnetic permeability increased significantly only in the case of 45 phr CoFe2O4, while the imaginary part was modest in both NR and PU composites. In contrast, the electrical permittivity of CoFe2O4–PU was larger than that of CoFe2O4–NR composites, and both parts at 100 MHz had linear variations with the loading, in agreement with Wagner’s equation.  相似文献   

7.
In order to improve high reinforcement properties of natural rubber (NR), SiO2@HCNFs as novel double-phase nanofillers at low content have been loaded in NR by using mechanical mixing method. The morphologies and structures of SiO2@HCNFs and NR composites were characterized, and the performances of NR composites were measured. The results show that compared with pure N330/NR, the modulus at 300% strain, tensile strength, elongation at break of NR composites increase by 10.7, 17.9, and 9.0%, respectively, at only 2.5 phr SiO2@HCNFs content. Meanwhile, the volume abrasion of NR composites is also dramatically reduced at 2.5 phr SiO2@HCNFs content, about 53.4% less than that of N330/NR, though the shore hardness increases by only 3.7%. It is also found that NR composites reinforced by SiO2@HCNFs at 2.5 phr content have much higher hardness and abrasion performance than HCNFs/NR. The DMA results show that high wet skid resistance and low rolling resistance of NR composites were also achieved by loading 6.5 phr SiO2@HCNFs. The unique structure of SiO2@HCNFs double-phase nanofillers plays a crucial role in properties of NR composites, in virtue of the significant synergetic reinforcing effect of both HCNFs and silica.  相似文献   

8.
Novel, flexible, lead‐free X‐ray‐shielding composites were prepared with a high‐functional methyl vinyl silicone rubber (VMQ) matrix with W and Bi2O3 as filler materials. To verify the advanced properties of the lead‐free material, composites with the same mass fraction of PbO were compared. With the X‐ray energy ranging from 48 to 185 keV, the W/Bi2O3/VMQ composites exhibited higher X‐ray‐shielding properties. As the filler volume fraction decreased, the tensile strength, elongation, tear strength, and flexibility of the W/Bi2O3/VMQ composites increased. The Shore hardness of the W/Bi2O3/VMQ composites had a maximum value of 46.6 HA and was still very flexible. With decreasing filler volume fraction, the water‐vapor transmission performances of the W/Bi2O3/VMQ composites increased, and the W/Bi2O3/VMQ composites also showed better water‐vapor permeability. The heat‐transfer properties of the W/Bi2O3/VMQ composites increased with increasing W content, and when the W content exceeded 70 wt %, the thermal conductivity of the W/Bi2O3/VMQ material was about 70.45% higher than that of the PbO/VMQ composite. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43012.  相似文献   

9.
Abstract

Ethylene–propylene–diene monomer (EPDM) rubber composites reinforced with 50 phr samarium oxide (Sm2O3), samarium borate (SmBO3) and Sb in antimony doped tin oxide (ATO) are aged at 150°C for different intervals. It is found that neutral Sm2O3 and alkaline SmBO3 can retard the oxidative degradation of EPDM by blocking radical passage. The acidic ATO particles can accelerate the oxidative degradation of EPDM. The trend of tensile strength of EPDM composites is consistent with that of cross-link density of EPDM composites. SmBO3 and ATO can retard the increase of dielectric loss until 10 days of aging, while Sm2O3 can keep the dielectric loss at low level until 14 days of aging. The increased surface charge of filler can make surface and volume resistivity decrease sharply. Antimony doped tin oxide can deteriorate the dielectric strength of EPDM, while SmBO3 and Sm2O3 can keep the dielectric strength of EPDM at a constant level.  相似文献   

10.
As a “green” radiation protection material with the potential to replace lead oxide, bismuth oxide has more research applications in the field of γ protection. However, due to their different surface properties, there are compatibility and interaction problems between metal oxides and rubber. To enhance the performance of bismuth oxide in neoprene, Bi2O3@PCPA-KH590 was prepared by coating bismuth oxide with polyphenol/polyamine and grafting KH590 on the surface of bismuth oxide. This allows for creating more active sites with the help of polyphenol/polyamine, enabling KH590 to be grafted onto bismuth oxide particles. The S functional group on the silane coupling agent is then cross-linked with the rubber substrate, enhancing the dispersibility of the bismuth oxide powder. This improvement not only improves the dispersibility of the bismuth oxide powder but also enhances the mechanical properties of the rubber composite material. Compared with pure CR, the mechanical properties of 60 wt% filler-modified powder composites can still be maintained at a high level, with the tensile strength reaching 12.83 Mpa. In sum, the proposed method appears feasible for preparing highly filled radiation protection rubber-based materials.  相似文献   

11.
The influence of a new coupling agent, ethylene diamine dilaurate (EDD) and a commercial silane coupling agent, (Si-69) on the cure characteristics, mechanical and morphological properties of silica-filled natural rubber (NR) composites was studied. The results show that scorch time and cure time decreased with an increase in both coupling agents' content, but maximum and minimum torques exhibit the opposite trend. The mechanical properties such as tensile strength and tensile modulus, M100 and M300, increased with increasing both coupling agents' content but at a similar coupling agent content, silica-filled natural rubber composites with Si-69 exhibit better tensile strength (more than 2 phr) and tensile modulus than does EDD. Elongation at break (Eb) of silica-filled natural rubber increased with increasing EDD content but Si-69 exhibits the opposite trend. Scanning electron microscopy (SEM) study of tensile fracture surfaces shows the better tensile strength of silica-filled natural rubber composites with Si-69 and EDD over control composites (without EDD or Si-69). Thermogravimetric analysis (TGA) results indicate that silica-filled NR composites with EDD have higher thermal stability than Si-69. Fourier transform infrared spectra (FTIR) provided an evidence of interaction between EDD and Si-69 with silica in NR composites.  相似文献   

12.
Abstract

Rubber ferrite composites have the unique advantage of mouldability, which is not easily obtainable using ceramic magnetic materials. The incorporation of mixed ferrites in appropriate weight ratios into the rubber matrix not only modifies the dielectric properties of the composite but also imparts magnetic properties to it. Mixed ferrites belonging to the series of Mn(1 -x)Znx Fe2 O4 have been synthesised with different values of x in steps of 0·2, using conventional ceramic processing techniques. Rubber ferrite composites were prepared by the incorporation of these pre-characterised polycrystalline Mn(1 -x)ZnxFe2 O4 ceramics into a natural rubber matrix at different loadings according to a specific recipe. The processability of these elastomers was determined by investigating their cure characteristics. The magnetic properties of the ceramic fillers as well as of the rubber ferrite composites were evaluated and the results were correlated. Studies of the magnetic properties of these rubber ferrite composites indicate that the magnetisation increases with loading of the filler without changing the coercive field. The hardness of these composites shows a steady increase with the loading of the magnetic fillers. The evaluation of hardness and magnetic characteristics indicates that composites with optimum magnetisation and almost minimum stiffness can be achieved with a maximum loading of 120 phr of the filler at x=0 4. From the data on the magnetisation of the composites, a simple relationship connecting the magnetisation of the rubber ferrite composite and the filler was formulated. This can be used to synthesise rubber ferrite composites with predetermined magnetic properties.  相似文献   

13.
《Ceramics International》2020,46(10):16480-16492
Transition metal oxide nanoparticles (CuO, ZnO & Fe2O3) and mixed metal oxides CuO. ZnO.Fe2O3 were fabricated by facile co-precipitation approach for photocatalytic treatment of organic dyes. The structural features, phase purity, crystallite size and morphology of individual and mixed metal oxides were analysed by X-rays diffraction patterns (XRD) and scanning electron microscopic (SEM) analysis. Electrical behaviour of CuO, ZnO, Fe2O3 and mixed metal oxides CuO. ZnO.Fe2O3 was explored by current-voltage (I-V) measurements. Functional groups present in the synthesized metal oxides were investigated by Fourier transform infrared spectroscopy (FTIR) which ensures the existence of M-O functional groups in the samples. The optical bandgap analysis was carried out by UV–visible spectroscopic technique which revealed that the blend of three different transition metal oxides reduced the bandgap energy of mixed metal oxides. The reason behind this reduced bandgap energy is formation of new electronic state which arises due to the metal-oxygen interactions. Moreover, the nanocomposites of CuO.ZnO.Fe2O3 with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) were prepared to study the effect of the carbonaceous materials on the rate of photodegradation. These carbonaceous nanomaterials have plethora properties which can bring advancement in sector of photocatalytic treatment of wastewater. The photocatalytic experiments were performed using methylene blue (MB) as standard dye for comparative study of metal oxides and their composites with rGO and CNTs. The percentage degradation of methylene blue (MB) by nanocomposite CuO.ZnO.Fe2O3/rGO is 87% which is prominent among all samples. This result ascribed the photocatalytic aspects of reduced graphene oxide along with mixed metal oxides.  相似文献   

14.
The grafting of poly(2-hydroxyethyl acrylate) onto natural rubber (NR-g-PHEA) was used to compatibilize NR composites with silica filler. The NR/silica compounds were prepared with various grafting percentages of NR-g-PHEA (0, 6.5, 10.5, and 14.5%) and fixed amounts of 3 parts per hundred of rubber (phr) NR-g-PHEA and 20 phr silica. The cure characteristics were examined using a moving die rheometer. The physicomechanical properties of NR/silica composites were determined in terms of tensile strength, bound rubber content, and dynamic mechanical analysis. Thermal properties were assessed with thermogravimetric analysis. The results showed that scorch time and cure time tend to decrease with the level of grafting in NR-g-PHEA. The NR-g-PHEA decreased tan δ, whereas bound rubber content in NR/silica compounds increased, which indicates improved silica dispersion in the NR matrix. The mechanical properties improved with level of grafting in NR-g-PHEA. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48738.  相似文献   

15.
This paper investigates the effect of iron oxide concentration on the vulcanization process, electrical conductance during swelling in kerosene, and sheds some light on the possible mechanism of vulcanization kinetics. The rate and degree of crosslinking have been evaluated as a function of Fe2O3 concentration. It was found that the characteristic time constant during vulcanization decreases as the Fe2O3 concentration increases. The activation energy of the crosslinking reaction is calculated. An abrupt decrease in electrical conductance appears after a characteristic time of swelling. A modified model is suggested to calculate the separation distance in the conductive rubber matrix. The effect of microwave irradiation on electrical conductance and separation distance between conductive aggregate of butyl rubber (IIR) composites is also studied. Fe2O3 inhibits the degradation of IIR composites and microwave irradiation enhances the texturing microstructure of rubber matrix. © 2000 Society of Chemical Industry  相似文献   

16.
Montmorillonite (Mt) was intercalated with cetyltrimethylammonium bromide and functionalized with three types of aminosilane (3‐aminopropyltrimethoxysilane, n‐(2‐aminoethyl)‐3‐aminopropyltrimethoxysilane and 3‐[2‐(2‐aminoethylamino)ethylamino]propyltrimethoxysilane). The modified Mt was compounded with natural rubber (NR)/epoxidized natural rubber (ENR) via one‐step latex compounding. The effect of the modified Mt content on the oil resistance and mechanical properties of the NR/ENR/modified Mt composites was investigated. The X‐ray diffraction patterns of the composites showed partial intercalation/exfoliation of the modified Mt in the rubber matrix. Cryogenic fracture and X‐ray fluorescence results revealed highly dispersed modified Mt in the composites in the presence of 10 phr ENR. All three aminosilane groups slightly improved the oil resistance, with the long‐alkyl‐length group producing the greatest improvement. The addition of a small amount of modified Mt improved both oil resistance and tensile strength by increasing in the average diffusion path length in the NR matrix and enhancing the interaction between the modified Mt and the epoxide groups in ENR. The addition of 1.0 phr of modified Mt increased the tensile strength by 18% and decreased the elongation at break by 12% compared with a neat NR/ENR blend. © 2017 Society of Chemical Industry  相似文献   

17.
A new composite based on natural rubber vulcanizates loaded with the newly prepared iron oxide–aluminum oxide (Fe2O3·Al2O3) fillers were prepared and their physical and magnetic studies were investigated. The prepared fillers were evaluated as reinforcing fillers with some magnetic properties; these properties were dependent on the ratio of iron oxide to aluminum oxide in each prepared ratio of these fillers. Rheological properties of rubber mixes containing (1Fe2O3:3Al2O3) and (1Fe2O3:1Al2O3) fillers exhibited better properties than mixes containing (3Fe2O3:1Al2O3) and (α‐Fe2O3), which showed almost the same behavior. Physical properties such as tensile strength, stress at 100 and 200% strain, Young's modulus, and hardness were increased by increasing the volume fraction of the investigated fillers concentration in the mixed vulcanizates. Measured rheological and physical results were inversely related to the magnetic properties. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:494–505, 2006  相似文献   

18.
The simultaneous reduction and functionalization of graphene oxide (GO) was realized through a chemical grafting reaction with a functionalization agent N,N-bis(3-aminopropyl)methylamine (APMEL). The reduced and functionalized reduced GO (rGO-APMEL) sheets can be well dispersed in water without any added surfactant and the formed stable rGO aqueous dispersion can be kept for a long time, which can be used for the preparation of rubber–graphene (GE) composites by latex mixing. The electrostatic interaction between rGO–APMEL (positively charged) and natural rubber latex particles (negatively charged) leads to the formation of NR/rGO–APMEL composites with strong interaction. Compared with blank NR, the tensile strength and modulus for NR/rGO–APMEL increase with the rGO–APMEL loading. Especially, when the filler content is 5 phr, the tensile strength of NR/rGO–APMEL-5 increases by 32.7%, as a control the tensile strength of NR/GO-5 and NR/rGO-5 decrease by 20.1 and 15.6%, respectively. The entanglement-bound rubber tube model was used to analyze the reinforcing effect of GE on NR/rGO–APMEL nanocomposites at a molecular level. This study may provide us a novel approach to prepare well dispersed and exfoliated rGO–polymer nanocomposites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47375.  相似文献   

19.
Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H_2O_2) and distilled water(H_2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites; the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.  相似文献   

20.
Material waste from the production of autoclaved aerated concrete, a porous material, should be considered as a valuable byproduct for use as a filler material for the rubber industry. Natural rubber (NR) composites filled with different loading (over the range of 0–60 phr) of autoclaved aerated concrete waste (AACW) as a new eco‐friendly material were produced using two roll mills and then were studied for their cure characteristics, mechanical and aging properties, and morphology, and also compared with commercial fillers, calcium carbonate (CaCO3), and silica (SiO2). In most cases, the cure characteristics and mechanical and aging properties of the SiO2‐filled NR composites were significantly better than those of the AACW‐ and CaCO3‐filled NR composites. However, these properties for AACW‐filled composites appeared to be higher than CaCO3‐filled composites. The reason for this could be due to a larger surface area which is both porous and of an irregular shape of the AACW filler used. Scanning electron microscope images showed that the morphology of the rubber filled with SiO2 was finer and more homogenous compared with the rubber filled with AACW or CaCO3. Overall results revealed that the reinforcement ability of AACW‐filled NR composites was generally better when compared with CaCO3‐filled NR composites; therefore, AACW can be used effectively as a cheaper filler for production of rubber products where end‐use properties of a rubber product is specifically required. POLYM. COMPOS., 36:2030–2041, 2015. © 2014 Society of Plastics Engineer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号