首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel polymer bearing coumarin pendants of 4‐allyloxy‐2H‐chromen‐2‐one (ACO) was synthesized by atom transfer radical polymerization (ATRP) in toluene at 110°C using 2‐Bromoisobutyryl bromide (BIBB), Cu (I) Br, and 2,2′‐bipyridyl (bpy) as initiator, catalyst, and ligand, respectively. The most appropriate molar concentration ratio of [ACO] : [BIBB] : [Cu (I) Br] : [bpy] was found to be 40 : 1 : 1 : 2 for controlled polymerization. Successful chain extension polymerization of poly (4‐allyloxy‐2H‐chromen‐2‐one) (PACO) confirms the livingness of the process. The activation energy (Ea) (76.26 kJ mol?1) and enthalpy of activation (ΔH?) (73.07 kJ mol?1) were in good agreement to each other proving the feasibility of the reaction and negative value of entropy of activation (ΔS?) (?320 J mol?1 K?1) supported the highly restricted movement of reacting species in transition state during polymerization. Initial polymer decomposition temperature of PACO was found to be 130°C. SEM analysis revealed that polymer surface is not smooth with pointed rod like shapes. The polymer/Ag nanocomposite was synthesized and examined in view of antibacterial effect against Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Klebsiella pneumonae. PACO and its Ag nanocomposite (PACON) have been found to be active selectively against bacterial pathogen E. fecalis with minimum inhibitory concentration of 50 and 32 μg mL?1, respectively. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

2.
A copolymer of phenylisocyanate (PhNCO) and ε‐caprolactone (CL) was synthesized by the rare earth chloride systems lanthanide chloride isopropanol complex (LnCl3·3iPrOH) and propylene epoxide (PO). Polymerization conditions were investigated, such as lanthanides, reaction temperature, monomer feed ratio, La/PO molar ratio, and aging time of catalyst. The optimum conditions were: LaCl3 preferable, [PhNCO]/[CL] in feed = 1 : 1 (molar ratio), 30°C, [monomer]/[La] = 200, [PO]/[La] = 20, aging 15 min, polymerization in bulk for 6 h. Under such conditions the copolymer obtained had 39 mol % PhNCO with a 78.2% yield, Mn = 20.3 × 103, and Mw/Mn = 1.60. The copolymers were characterized by GPC, TGA, 1H‐NMR, and 13C‐NMR, and the results showed that the copolymer obtained had a blocky structure with long sequences of each monomer unit. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 2135–2140, 2007  相似文献   

3.
The reversible addition-fragmentation chain transfer (RAFT) polymerization of N-acryloyl morpholine (NAM), a water-soluble bi-substituted acrylamide derivative, has been investigated in the presence of tert-butyl dithiobenzoate (tBDB), a chain transfer agent (CTA) which showed good fragmentation/reinitiation efficiency as reported in a previous comparative study. The influence of several experimental parameters, such as temperature, monomer concentration [M], dithioester to initiator molar ratio ([CTA]/[AIBN]) and monomer to dithioester molar ratio ([M]/[CTA]), has been studied with respect to polymerization duration, conversion limit, adequacy between experimental and calculated molecular weight (MW) values and polydispersity index (PDI). The kinetics has been followed over the whole conversion range by 1H NMR spectroscopy and the MW determined by aqueous size exclusion chromatography with on-line light scattering detection. This study evidences the preponderant parameters leading to an excellent control of MW and PDI. Kinetics appear strongly influenced by both temperature and [CTA]/[AIBN] ratio, and to a lesser extent by monomer concentration. A high [CTA]/[AIBN] ratio resulted in a long induction time, which could be reduced by replacing the CTA by a macroCTA. Surprisingly, the control over MW and PDI was improved by an increase in temperature from 60 to 90 °C. Moreover, an increase of the [CTA]/[AIBN] molar ratio from 3.3 to 10, also improved the MW control; however, an additional increase of this ratio to 20 led to a marked loss of control, indicating the existence of an optimal [CTA]/[AIBN] ratio. In addition, MALDI–TOF MS and 1H NMR analyses confirmed the end-functionalization of the chains with a dithiobenzoate group.  相似文献   

4.
In this contribution, random copolymers of p(styrene‐co‐acrylonitrile) via initiators for continuous activator regeneration (ICAR) in atom transfer radical polymerization (ATRP) (ICAR ATRP) of styrene and acrylonitrile (SAN) were synthesized at 90°C in low molecular weight polyethylene glycol (PEG‐400) using CCl4 as initiator, FeCl3·6H2O as catalyst, succinic acid as ligand and thermal radical initiator azobisisobutyronitrile (AIBN) as thermal free radical initiator. In this system, well‐defined copolymer of SAN was achieved. The kinetics results showed that the copolymerization rate obeyed first‐order kinetics model with respect to the monomer concentration, and a linear increase of the molecular weights with the increasing of monomer conversion with narrow molecular weight distribution was observed in the range of 1.1–1.5. The conversion decreased with increasing the amount of FeCl3·6H2O and increased with increasing the molar ratio of [St]0/[AN]0/[CCl4]0 and temperature. AIBN has a profound effect on the polymerization. The activation energy was 55.67 kJ mol?1. The living character of copolymerization was confirmed by chain extension experiment. The resultant random copolymer was characterized by 1H‐NMR and GPC. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40135.  相似文献   

5.
The presence of a bulky substituent at the 2‐position of 1,3‐butadiene derivatives is known to affect the polymerization behavior and microstructure of the resulting polymers. Free‐radical polymerization of 2‐triethoxysilyl‐1,3‐butadiene ( 1 ) was carried out under various conditions, and its polymerization behavior was compared with that of 2‐triethoxymethyl‐ and other silyl‐substituted butadienes. A sticky polymer of high 1,4‐structure ( ) was obtained in moderate yield by 2,2′‐azobisisobutyronitrile (AIBN)‐initiated polymerization. A smaller amount of Diels–Alder dimer was formed compared with the case of other silyl‐substituted butadienes. The rate of polymerization (Rp) was found to be Rp = k[AIBN]0.5[ 1 ]1.2, and the overall activation energy for polymerization was determined to be 117 kJ mol?1. The monomer reactivity ratios in copolymerization with styrene were r 1 = 2.65 and rst = 0.26. The glass transition temperature of the polymer of 1 was found to be ?78 °C. Free‐radical polymerization of 1 proceeded smoothly to give the corresponding 1,4‐polydiene. The 1,4‐E content of the polymer was less compared with that of poly(2‐triethoxymethyl‐1,3‐butadiene) and poly(2‐triisopropoxysilyl‐1,3‐butadiene) prepared under similar conditions. Copyright © 2010 Society of Chemical Industry  相似文献   

6.
The free‐radical polymerization behavior of 1‐vinyl,2‐pyrrolidone (NVP) was studied at low conversions, using capillary dilatometry. The aqueous media were kept at neutral pH and the studies were conducted isothermally, at 40 or 45°C. The azo‐type initiators used were 4,4′‐azobis‐4‐cyanopentanoic acid (ACPA), 2,2′‐azobisisobutyronitrile (AZBN), and 2,2′‐azobis[2‐(2‐imidazolin‐2‐yl)propane dihydrochloride] (ABDH). The monomer concentration and initiator concentration ranges were 1.17–2.34 mol L−1 and 1–8 mmol L−1, respectively. The rates of polymerization (Rp) and orders of reaction with respect to NVP and the initiator were evaluated and the kinetic equations were found to be Rp ∝ [NVP] [ACPA]1.2; Rp ∝ [NVP] [AZBN]1.1; and Rp ∝ [NVP]2.2 [ABDH]1.1. The polymers obtained were characterized by their viscosity numbers and correlation of the viscosity average molecular weights made with the type and amount of the azo initiator. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 239–246, 2000  相似文献   

7.
Controlled radical double ring‐opening polymerization of 2‐methylene‐1,4,6‐trioxaspiro[4,4]nonane (MTN) has been achieved with tert‐butyl perbenzoate (TBPB) as initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) at 125 °C. The molecular weight polydispersity of the polymers is obviously lower than that of polymers obtained by conventional procedures. As the [TEMPO]/[TBPB] molar ratio increased, the polydispersity decreased and a polydisperty as low as 1.2 was obtained at high TEMPO concentration. With the conversion of the monomer increasing, the molecular weight of the polymers turned higher and a linear relationship between the Mw and the monomer conversion was observed. The monomer conversion, however, did not exceed 30 %. © 2000 Society of Chemical Industry  相似文献   

8.
Two new highly stable energetic salts were synthesized in reasonable yield by using the high nitrogen‐content heterocycle 3,4,5‐triamino‐1,2,4‐triazole and resulting in its picrate and azotetrazolate salts. 3,4,5‐Triamino‐1,2,4‐triazolium picrate (1) and bis(3,4,5‐triamino‐1,2,4‐triazolium) 5,5′‐azotetrazolate (2) were characterized analytically and spectroscopically. X‐ray diffraction studies revealed that protonation takes place on the nitrogen N1 (crystallographically labelled as N2). The sensitivity of the compounds to shock and friction was also determined by standard BAM tests revealing a low sensitivity for both. B3LYP/6–31G(d, p) density functional (DFT) calculations were carried out to determine the enthalpy of combustion (ΔcH (1) =−3737.8 kJ mol−1, ΔcH (2) =−4577.8 kJ mol−1) and the standard enthalpy of formation (ΔfH° (1) =−498.3 kJ mol−1, (ΔfH° (2) =+524.2 kJ mol−1). The detonation pressures (P (1) =189×108 Pa, P (2) =199×108 Pa) and detonation velocities (D (1) =7015 m s−1, D (2) =7683 m s−1) were calculated using the program EXPLO5.  相似文献   

9.
A facile, novel, and cost‐effective alkaline hydrolysis process of cinnamaldehyde to benzaldehyde under rather mild conditions has been investigated systematically in the presence of β‐cyclodextrin (β‐CD), with water as the only solvent. β‐CD could form inclusion complex with cinnamaldehyde in water, with molar ratio of 1:1, so as to promote the reaction selectivity. The complex has been investigated experimentally and with computational methods. 1H‐NMR, ROESY, UV–Vis, and FTIR have been utilized to analyze the inclusion complex. It shows that the equilibrium constant for inclusion (Ka) is 363 M?1, and the standard Gibbs function for the reaction, ΔγG (298 K), is ?14.6 kJ mol?1. In addition, the structures of the proposed inclusion compounds were optimized with hybrid ONIOM theory. Benzaldehyde could be obtained at an yield of 42% under optimum conditions [50°C, 18 h, 2% NaOH (w/v), cinnamaldehyde:β‐CD (molar ratio) = 1:1]. To explain the experimental data, NMR, FTIR, and elemental analysis results were used to determine the main reaction by‐product 1‐naphthalenemethanol. A feasible reaction mechanism including the retro‐Aldol condensation of cinnamaldehyde and the Aldol condensation of acetaldehyde and cinnamaldehyde in basic aqueous β‐CD solution has been proposed. The calculated activation energy for the reaction was 45.27 kJ mol?1 by initial concentrations method. © 2009 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

10.
BACKGROUND: 2‐ethylhexylphosphonic acid mono‐(2‐ethylhexyl) ester (HEHEHP, H2A2) has been applied extensively to the extraction of rare earths. However, there are some limitations to its further utilization and the synergistic extraction of rare earths with mixtures of HEHEHP and another extractant has attracted much attention. Organic carboxylic acids are also a type of extractant employed for the extraction of rare earths, e.g. naphthenic acid has been widely used to separate yttrium from rare earths. Compared with naphthenic acid, sec‐nonylphenoxy acetic acid (CA100, H2B2) has many advantages such as stable composition, low solubility, and strong acidity in the aqueous phase. In the present study, the extraction of rare earths with mixtures of HEHEHP and CA100 has been investigated. The separation of the rare earth elements is also studied. RESULTS: The synergistic enhancement coefficient decreases with increasing atomic number of the lanthanoid. A significant synergistic effect is found for the extraction of La3+ as the complex LaH2ClA2B2 with mixtures of HEHEHP and CA100. The equilibrium constant and thermodynamic functions obtained from the experimental results are 10?0.92 (KAB), 13.23 kJ mol?1H), 5.25 kJ mol?1G), and 26.75 J mol?1 K?1S), respectively. CONCLUSION: Graphical and numerical methods have been successfully employed to determine the stoichiometries for the extraction of La3+ with mixtures of HEHEHP and CA100. The mixtures have different extraction effects on different rare earths, which provides the possibility for the separation of yttrium from heavy rare earths at an appropriate ratio of HEHEHP and CA100. Copyright © 2009 Society of Chemical Industry  相似文献   

11.
The oxidative polycondensation reaction conditions of 4‐[(2‐mercaptophenyl) imino methyl] phenol (2‐MPIMP) were studied in an aqueous acidic medium between 40 and 90°C by using oxidants such as air, H2O2, and NaOCl. The structures of the synthesized monomer and polymer were confirmed by FTIR, 1H NMR, 13C NMR, and elemental analysis. The characterization was made by TGA‐DTA, size exclusion chromatography (SEC) and solubility tests. At the optimum reaction conditions, the yield of poly‐4‐[(2‐mercaptophenyl) imino methyl]phenol (P‐2‐MPIMP) was found to be 92% for NaOCl oxidant, 84% for H2O2 oxidant 54% for air oxidant. According to the SEC analysis, the number‐average molecular weight (Mn), weight‐average molecular weight (Mw), and polydispersity index values of P‐2‐MPIMP were found to be 1700 g mol?1, 1900 g mol?1, and 1.118, using H2O2; 3100 g mol?1, 3400 g mol?1, and 1.097, using air; and 6750 g mol?1, 6900 g mol?1, and 1.022, using NaOCl, respectively. According to TG analysis, the weight losses of 2‐MPIMP and P‐2‐MPIMP were found to be 95.93% and 76.41% at 1000°C, respectively. P‐2‐MPIMP showed higher stability against thermal decomposition. Also, electrical conductivity of the P‐2‐MPIMP was measured, showing that the polymer is a typical semiconductor. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and the electrochemical energy gaps (Eg) of 2‐MPIMP and P‐2‐MPIMP were found to be ?6.13, ?6.09; ?2.65, ?2.67; and 3.48, 3.42 eV, respectively. Kinetic and thermodynamic parameters of these compounds investigated by MacCallum‐Tanner and van Krevelen methods. The values of the apparent activation energies of thermal decomposition (Ea), the reaction order (n), pre‐exponential factor (A), the entropy change (ΔS*), enthalpy change (ΔH*), and free energy change (ΔG*) were calculated from the TGA curves of compounds. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

12.
The synergistic effect of 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazalone‐5 (HPMBP, HA) and di‐(2‐ethylhexyl)‐2‐ethylhexylphosphonate (DEHEHP, B) in the extraction of rare earths (RE) from chloride solutions has been investigated. Under the experimental conditions used, there was no detectable extraction when DEHEHP was used as a single extractant while the amount of RE(III) extracted by HPMBP alone was also low. But mixtures of the two extractants at a certain ratio had very high extractability for all the RE(III). For example, the synergistic enhancement coefficient was calculated to be 9.35 for Y3+, and taking Yb3+ and Y3+ as examples, RE3+ is extracted as RE(OH)A2.B. The stoichiometry, extraction constants and thermodynamic functions such as Gibbs free energy change ΔG (?17.06 kJ mol?1), enthalpy change ΔH (?35.08 kJ mol?1) and entropy change ΔS (?60.47 J K?1 mol?1) for Y3+ at 298 K were determined. The separation factors (SF) for adjacent pairs of rare earths were calculated. Studies show that the binary extraction system not only enhances the extraction efficiency of RE(III) but also improves the selectivity, especially between La(III) and the other rare earth elements. Copyright © 2006 Society of Chemical Industry  相似文献   

13.
Optically active poly(L ‐phenyllactic acid) (Ph‐PLLA), poly(L ‐lactic acid) (PLLA), and poly(L ‐phenyllactic acid‐co‐L ‐lactic acid) with weight‐average molecular weight exceeding 6 × 103 g mol?1 were successfully synthesized by acid catalyzed direct polycondensation of L ‐phenyllactic acid and/or L ‐lactic acid in the presence of 2.5–10 wt % of p‐toluenesulfonic acid. Their physical properties and crystallization behavior were investigated by differential scanning calorimetry, thermogravimetry, and polarimetry. The absolute value of specific optical rotation ([α]) for Ph‐PLLA (?38 deg dm?1 g?1 cm3) was much lower than that of [α] for PLLA (?150 deg dm?1 g?1 cm3), suggesting that the helical nature was reduced by incorporation of bulky phenyl group. PLLA was crystallizable during solvent evaporation, heating from room temperature, and cooling from the melt. Incorporation of a very low content of bulky phenyllactyl units even at 4 mol % suppressed the crystallization of L ‐lactyl unit sequences during heating and cooling, though the copolymers were crystallizable for L ‐phenylactyl units up to 6 mol % during solvent evaporation. The activation energy of thermal degradation (ΔEtd) for Ph‐PLLA (200 kJ mol?1) was higher than that for PLLA (158 kJ mol?1). The ΔEtd for the copolymers increased with an increase in L ‐phenyllactyl unit content. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Simultaneous interpenetrating polymer networks (IPNs) based on poly(butyl methacrylate) and poly(α‐terpineol‐co‐styrene) were synthesized with azobisisobutyronitrile (AIBN) as the initiator and divinyl benzene as the crosslinking agent in xylene under an inert nitrogen atmosphere. Fourier transform infrared spectra provided structural evidence for the IPNs, indicating characteristic frequencies of ester groups of butyl methacrylate at 1723 cm?1 and alcoholic groups of α‐terpineol at 3436 cm?1. Scanning electron microscopy revealed threadlike network structures. Properties such as percentage swelling and average molecular weight between crosslinks were direct functions of the copolymer and initiator (AIBN) concentrations and inverse functions of the monomer (butyl methacrylate) and crosslinking agent (divinyl benzene) concentrations. Differential scanning calorimetry showed an IPN glass‐transition temperature at 80.2°C. The thermal decompositions of the IPNs were established with the help of thermogravimetric analysis. The value of the activation energy, calculated from thermogravimetric analysis with the Coats and Redfern equation, was 23 kJ/mol. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 343–352, 2006  相似文献   

15.
Kinetics of radiation grafting of N‐vinyl pyrrolidone (NVP) onto poly(ethylene terephthalate) (PET) fabric revealed the existence of four different processes. These are as follows: the grafting, the homopolymerization, the degradation, and the diffusion. The grafting process was followed by the increase in weight with the increase in irradiation time (t), while the homopolymerization and the degradation processes were evaluated from changes in the square root of the specific viscosity of the irradiated monomer solution (√ηsp) with the increase in t. All processes were carried out at different NVP concentrations, different irradiation temperatures (T), and a dose rate 1.31 Gy s?1. All processes followed first‐order kinetics except the degradation process that followed a 0.6‐order. The rate (R) and rate constant (k) of grafting and diffusion processes were found to increase with the increase in T, while the homopolymerization and degradation processes showed negative temperature dependence. The sum of R of the four processes was proportional to the initial NVP concentration, while k of the four processes was independent of T and has a value of 0.674 min?1. The respective apparent activation energies of 24.0, 6.24, 6.84, and 2.5 kJ mol?1 were calculated for the four processes. The NVP molecules participated in each process and their energies were evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3009–3022, 2006  相似文献   

16.
The free‐radical polymerization of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) in aqueous media and in the presence of potassium persulfate (KPS) as a thermal initiator was studied. The 1H‐NMR method was applied to record the reaction data in online gain. The effects of the monomer and initiator concentrations and also the reaction temperature were studied. The order of reaction with respect to the monomer was much greater than unity (1.94). None of the three theories describing an order of reaction higher than unity could predict the AMPS polymerization mechanism in this study. So, a new mechanism is presented. It is suggested that initiation took place through the formation of a complex between the initiator and monomer, and termination occurred not only by a bimolecular reaction but also by a monomolecular reaction. The order with respect to KPS was 0.49; this was consistent with classical kinetic theory. The determined activation energy at the overall rate of reaction was 92.7 kJ mol?1 K?1. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
Polymerization behaviors of isoprene under different polymerization conditions with 2‐(1‐methyl‐2‐benzimidazolyl)‐6‐(1‐(arylimino)ethyl) pyridine cobalt(II) dichloride and ethylaluminum sesquichloride or diethylaluminum chloride catalyst system were evaluated. The effects of temperature, solvents, [Al]/[Co] molar ratio, and the structure of cocatalysts on the catalyst activity and the characteristics of polyisoprenes (PIs) were investigated and optimum conditions for synthesizing stereoselective PIs were obtained. The results showed that pre‐catalyst activity was strongly influenced by polymerization temperature, [Al]/[Co] molar ratio and solvents, and the kinds of solvents and cocatalysts affected the microstructures of PIs greatly. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39703.  相似文献   

18.
The kinetics of 4‐methylpentene‐1 (4MP1) polymerization by use of Ziegler–Natta‐type catalyst systems, M(acac)3‐AlEt3 (M = Cr, Mn, Fe, and Co), are investigated in benzene medium at 40°C. The effect of various parameters such as Al/M ratio, reaction time, aging time, temperature, catalyst, and monomer concentrations on the rate of polymerization and yield are examined. The rate of polymerization increased linearly with increasing monomer concentration with first‐order dependence, whereas the rate of polymerization with respect to catalyst concentration is found to be 0.5. For all cases, the polymer yield is maximum at an Al/M ratio of 2. The activation energies obtained from linear Arrhenius plots are in the range of 25.27–33.51 kJ mol?1. It is found that the aging time to give maximum percentage yield of the polymer varies with the catalyst systems. Based on the experimental results, a plausible mechanism is proposed that envisages a free‐radical mechanism. Characterization of the resulting polymer product, for all the cases, through FTIR, 1H‐NMR, and 13C‐NMR studies, showed isomerized polymeric structures with 1,4‐structure as dominant. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2468–2477, 2003  相似文献   

19.
Polymerization of acrylonitrile was carried out using yttrium tris(2,6‐di‐tert‐butyl 4‐methyl‐phenolate) (Y(OAr)3) as single component catalyst for the first time. The effects of concentrations of the monomer and catalyst, kinds of rare earth element and solvent, as well as temperature and polymerization time were investigated. The overall activation energy of polymerization in n‐hexane and THF mixture is 18.3 kJ mol?1. Polyacrylonitriles (PANs) obtained by using Y(OAr)3 in n‐hexane and THF mixture at 50 °C are predominantly atactic, while yellow PANs obtained in DMF under the same conditions have a syndiotactic‐rich configuration (>50%), and their highly branched and/or cyclized structures have also been found. © 2002 Society of Chemical Industry  相似文献   

20.
Carrier‐free dyeing of radiation‐grafted polyester fabrics with disperse red dye was studied in the temperature range 283–363 K. 1‐vinyl 2‐pyrrolidone (NVP), acrylic acid (AA) or their mixture was used to graft poly(ethylene terephthalate) (PET) fabric. The effects of pH of the dye solution, graft yield (GY), dyeing time (t), dye concentration (C), and dyeing temperature (T) on the colour difference (CD) of PET fabric were studied. The best dyeing condition was achieved at pH 5.5. CD increases linearly with the increase in GY, with slopes depending on the type of grafted copolymer. CD increased rapidly as the dyeing time increased; this was followed by a relatively slow dyeing rate within a few minutes. The initial dyeing rate (R) was found to increase with an increase in C and T. The dyeing rates for all grafted samples followed 0.35‐order kinetics and are temperature‐independent. Average activation energy 9.26 kJ mol?1 is calculated for the dyeing process and is independent of the fabric treatment. Pre‐exponential rate constants 1976, 1839, and 1579 (CD/GY) s?1 were calculated for dyeing PET samples grafted with AA/NVP mixture, NVP and AA, respectively, while 1074 CD s?1 was evaluated for carrier dyeing of ungrafted fabric. Analysis of the kinetic parameters and the dyeing mechanism revealed that dyeing PET fabric was diffusion‐controlled. Grafting PET fabric improved significantly the dyeing affinity of the DR dye over ungrafted samples dyed in solutions containing a carrier. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号