首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of this study was to investigate three kinds of filler with completely different morphology on mechanical properties of natural rubber (NR). Coal gangue (CG) are derived from natural deposits are composed principally by illite and quartz. CG, carbon black (CB), and multiwalled carbon nanotube (CNT) were used as hybrid fillers in NR. CNTs were dispersed into NR latex by ultrasonic irradiation and then the mixed latex were coagulated to obtain the CNTs/NR masterbatch, then mechanical mixing method was employed to prepare the CG/CB/CNTs/NR composites. The addition of CG, CB, and CNTs to NR was varied with the total filler loading fixed at 35 phr. The mechanical properties of NR composites were studied in terms of tensile and dynamic mechanical analysis (DMA). The results showed that the tensile strength and modulus 300% (M300) of all hybrid samples were higher than the composites only loaded CG; and the highest tensile strength of NR loaded with hybrid fillers achieved at sample of loading amount of CG 17.5, CB 15.5, and CNTs 2 phr, whose M300 and elongation at break was obviously higher than that of only CB loaded NR composites; The inclusion CG improves the tensile strength of NR without the sacrifice of its extensibility, while CB and CNTs brings together the enhancement in the ultimate strength and the reduction in the extensibility. DMA results revealed that the existence of CG can improve the dispersion of CB and CNTs in NR matrix. POLYM. COMPOS., 37:3083–3092, 2016. © 2015 Society of Plastics Engineers  相似文献   

2.
Guar gum (GG) and hydroxypropyl guar gum (HPG) are widely used in a variety of applications ranging from foods, pharmaceutics to mining and explosives. However, there have been very few studies conducted investigating the use of these materials as fillers in polymer composites. GG and HPG were incorporated in an epoxy matrix and the mechanical properties of the resultant composites were determined. The tensile strength, flexural strength, and impact strength of the composites indicate that they provide reinforcement to the composites upto 5–7.5 phr after which there is a rapid decrease in the respective properties. HPG with higher propoxy content was found to provide greater reinforcement due to its increased hydrophobic nature leading to greater polymer–filler interaction. The nature of the filler required that the water absorption and related tests be carried out. The composites showed increased water absorption and also weight loss on exposure to acid and alkali environments, with HPGs showing greater variations when compared with GG, making the composites susceptible to moisture. The study shows that these fillers make an inexpensive, eco‐friendly, and renewable addition to conventional organic and inorganic fillers where the composites do not come into immediate contact with water. POLYM. ENG. SCI., 48:124–132, 2008. © 2007 Society of Plastics Engineers  相似文献   

3.
Filler‐filled natural rubber (NR) vulcanizates were prepared by conventional laboratory‐sized two roll mills and cured using sulfuric system. The effect of thermal aging on physical properties and thermogravimetric analysis (TGA) of oil palm ash (OPA) and commercial fillers (i.e., silica vulkasil C and carbon black N330)‐filled NR vulcanizates at respective optimum loading and equal loading were studied. Before aging, the OPA‐filled vulcanizates showed comparable optimum strength as carbon black‐filled vulcanizates. The hardening of aged filler‐filled NR vulcanizates happened after aging, thereby tensile strength and elongation at break reduced while the modulus increased. Fifty phr carbon black‐filled vulcanizates showed better retention in tensile properties as compared to silica (10 phr) and OPA (1 phr). This was attributed to the addition of different filler loading and this finding was further explained when equal loading of filler‐filled vulcanizates was studied. Fourier transform infra‐red analysis showed chemical structure had changed and tensile fractured surface exhibited smooth appearance due to the deterioration in tensile properties after aging. TGA also denoted the thermal stability was depending on the amount of filler loading. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4474–4481, 2013  相似文献   

4.
The rapid growth of environmentally sustainable and eco-friendly materials tends to the utilization of biowastes as filler in polymer matrix composites. The particulate composite with improved wettability of fillers and advanced approach can evolve polymer composites that exhibit promising applications in packaging, automobile, marine, construction, and aerospace. In the present work, one of the biowaste fillers were synthesized from Limonia acidissima shells via a top-down approach (pulverizing) and the surfaces were chemically modified using sodium hydroxide (NaOH) before they were used as fillers in vinyl ester polymer composites by different weight percentage (0, 5, 10, 15, and 20 wt%). The prepared particulate composites were characterized by mechanical properties, moisture absorption behavior, and morphology. At different filler loading the tensile strength, tensile modulus, flexural strength, flexural modulus, impact strength, hardness, density, and moisture intake tests were performed. The results reveal that the properties increased for composites filled with alkaline treated fillers for the same filler loading and found to be higher at filler loading of 15 wt%. The morphological analysis confirms the better interfacial bonding between alkali-treated particles and matrix due to the removal of non-cellulose materials from the surface of the particles.  相似文献   

5.
As a biopolymer with high mechanical strength, nanocellulose was generally considered as a green filler for reinforcing polymer. In this study, nanocrystalline cellulose (NCC) isolated from softwood pulp was successfully modified by cetyltrimethyl ammonium bromide (CTMAB), a cationic surfactant, and the modified nanocrystalline cellulose (m-NCC) was used to reinforce natural rubber (NR). In this composite architecture, it was found that when the filler content was 5 or 10 phr, the surface modification of NCC improved the dispersion state of NCC in NR matrix and the interfacial interaction between NR and NCC. Therefore, the NR/m-NCC composites exhibited outstanding mechanical properties, and its tensile strength, elongation at break and tear strength was increased by 132.8, 20, and 66.1%, respectively, compared to pristine NR composites. Besides, the modified NCC could accelerate the vulcanization and improve wet-skid resistance and aging resistance of NR composites. It is envisioned that the modified NCC has the potential to be generalized to manufacturing other polymer matrix composites strengthened with nanocellulose.  相似文献   

6.
用季戊四醇、丙三醇和钛酸酯偶联剂分别对氧化铝、氧化镁和高岭土进行表面改性,并将改性填料填充天然橡胶(NR)制备了导热复合材料,考察了表面处理剂种类及其用量对无机填料的影响,并研究了季戊四醇改性氧化铝填充NR复合材料的硫化特性、物理机械性能和导热性能.结果表明,3种填料中季戊四醇的改性效果最好,且其用量为1.0~1.5份时对氧化铝的改性效果最佳;随着改性氧化铝填充量的增加,复合材料的最大转矩、300%定伸应力、拉伸强度和热导率均增大,当其用量为60份时,改性氧化铝填充NR复合材料的热导率比未填充NR复合材料提高了23.9%.  相似文献   

7.
Lime kiln dust (LKD) obtained from kraft chemical recovery systems by conversion of calcium carbonate (CaCO3) back into calcium oxide (CaO) for reuse in the causticizing process, is mainly composed of CaCO3. A two‐stage conventional mixing procedure was used to incorporate LKD into natural rubber (NR). For comparison purposes, four commercial fillers, stearic acid coated CaCO3, ground CaCO3, silica, and carbon black, were also used. The effect of these fillers on the curing characteristics and mechanical properties of NR materials at various loadings ranging from 0 to 60 phr were studied. The results indicate that the use of LKD filler resulted in a lower Mooney viscosity and shorter curing time in the NR materials. The incorporation of LKD into NR improved the Young's modulus and hardness but decreased the tensile strength and tear strength. However, LKD was better in processability than the commercial fillers. Scanning electron micrographs revealed that the morphology of the rubbers filled with reinforcing fillers, such as silica and carbon black, was finer and more homogeneous compared to the those of the rubbers filled with LKD and commercial CaCO3. The dispersion of LKD and commercial CaCO3 fillers in the rubber matrix was discontinuous, which in turn, generated a weak structure compared with the reinforcing fillers. According to these observations, LKD could be used as a cheaper filler for NR materials where improved mechanical properties are not critical. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
The use of octadecylamine modified montmorillonite as substitute of carbon black in natural rubber (NR) compounds is studied. Rubber with 10 parts per hundred resin (phr) of pristine (clay) and octadecylamine modified montmorillonite (organoclay) were compared with 10 and 40 phr carbon black as filler. The modified silicate is analysed by X-ray, FTIR and thermogravimetric analysis. Vulcametric curves show that the organoclay and carbon black accelerate the vulcanization reaction and, furthermore, give rise to a marked increase in the torque, indicating a higher degree of crosslinking as was also confirmed by swelling measurements and DSC. The vulcanisation rate and torque value of the organoclay compound are sensibly higher than the carbon black compound even at high contents (40 phr). Mechanical characterization shows the strong reinforcing effect of both fillers up to 350% in the strength in relation to NR. The mechanical properties of NR with 10 phr organoclay are comparable to the compound with 40 phr carbon black. Moreover, the organoclay improves the strength of the NR without hardly any reduction in the elasticity of the material.  相似文献   

9.
Cellulose nanoparticles (CelNPs) prepared by an acid hydrolysis process were acetylated under ambient conditions to retain the nanosize and to obtain hydrophobic nanosized derivatives. Green nanocomposites of natural rubber (NR) with more than 50 phr of cellulosic fillers were successfully developed by a commercial dry mixing process. The incorporation of cellulose acetate nanofiller up to 40 phr led to an almost linear increase in both the tensile and elongation properties, which were higher than even those of a composite with the conventional filler carbon black (CB). This was further supported by the almost uniform single‐phase morphology of the nanobiocomposite revealed by scanning electron microscopy and the high thermal stability. The results indicate the high degree of compatibility between the hydrophobic nanosized filler and the NR matrix. Although a drop in the mechanical strength was observed above 50 phr, the cellulose derivatives were expected to prove to be promising substitutes for the hazardous filler CB even at higher loadings. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40632.  相似文献   

10.
Epoxy polymers are commonly utilized in structural applications due to their high bearing capacity and excellent chemical resistance. However, their inherent brittleness poses a significant challenge for their use in high shock and fracture strength products. To address this shortcoming, fillers can be incorporated into the polymer during preparation. In this study, we aimed to investigate the effect of incorporating cellulose-based fillers, namely cellulose nanocrystals (CNCs) and microcrystalline cellulose (MCC), on the mechanical properties of epoxy polymer composites. The study evaluated the impact of various factors, including filler concentration, particle size, and moisture content, on the mechanical properties of the composites. The results demonstrated that the incorporation of CNC or MCC powders at concentrations below 5% could enhance the mechanical properties of the resulting epoxy composites without adversely affecting their surface and thermal properties. The maximum tensile strength and fracture toughness of the filler-based epoxy composites were achieved at 2 and 4 wt% for CNCs and MCC, respectively. CNCs with a smaller particle size distribution were found to be much more effective than MCC in improving the mechanical properties of the epoxy composites. Furthermore, utilizing dried fillers resulted in a higher improvement in tensile strength, which was achieved at lower filler concentrations.  相似文献   

11.
利用硝酸氧化法对碳纳米管(CNTs)进行纯化,并用环氧天然橡胶(ENR)进行改性处理。结合胶质量分数测定结果表明, ENR用量15%(质量)时效果最佳。采用胶乳凝聚法制备CNTs/天然橡胶(NR)母料。煤矸石粉(CG)经高温煅烧和表面改性处理。 将CNTs/天然橡胶(NR)母料、CG和炭黑(CB)通过机械混炼法与天然橡胶及配合剂混合,制备CB/CG/CNTs/NR复合材料,并对复合材料进行硫化特性及物理机械性能。结果表明: CNTs延迟硫化效应明显;相比炭黑,CG对硫化具有促进作用。硫化特性和甲苯溶胀法测定结果表明,在填料份数相同的条件下,单独由CB填充的NR有最大的交联密度,CNTs对交联密度影响不明显。物理机械性能测试结果表明,当CG:CB:CNTs=17.5:16.5:1(Phr)时,NR硫化胶的300%定伸应力和扯断伸长率明显高于单独由CB填充NR,而拉伸强度与之接近,复合填料样填充NR具有较好的综合性能。扫描电镜测试结果表明,复合填料在NR基体中分布均匀。  相似文献   

12.
采用干法和湿法两种混炼工艺制备了螺旋纳米碳纤维(HCNFs)/炭黑(CB)/天然橡胶(NR)复合材料,通过扫描电镜、拉伸试验机和应变扫描仪分别对所制备复合材料的界面形貌、力学性能和Payne效应进行了测试分析,考察了混炼方式对复合材料宏观力学性能及Payne效应的影响。结果表明,与纯CB填料相比,在干湿两种混炼方式下,添加适量的HCNFs(1~6份)能提高HCNFs/CB/NR复合材料的300%定伸应力、扯断伸长率、拉伸强度和硬度。与干法混炼相比,湿法混炼能明显增强HCNFs/CB/NR复合材料的Payne效应,并提升在HCNFs高添加量(2~6份)条件下的拉伸强度和扯断伸长率,这主要源于湿法混炼能够有效改善HCNFs在橡胶基质中的分散性。  相似文献   

13.
Natural rubber (NR) composites highly filled with nano‐α‐alumina (nano‐α‐Al2O3) modified in situ by the silane coupling agent bis‐(3‐triethoxysilylpropyl)‐tetrasulfide (Si69) were prepared. The effects of various modification conditions and filler loading on the properties of the nano‐α‐Al2O3/NR composites were investigated. The results indicated that the preparation conditions for optimum mechanical (both static and dynamic) properties and thermal conductivity were as follows: 100 phr of nano‐α‐Al2O3, 6 phr of Si69, heat‐treatment time of 5 min at 150°C. Furthermore, two other types of fillers were also investigated as thermally conductive reinforcing fillers for the NR systems: (1) hybrid fillers composed of 100 phr of nano‐α‐Al2O3 and various amounts of the carbon black (CB) N330 and (2) nano‐γ‐Al2O3, the particles of which are smaller than those of nano‐α‐Al2O3. The hybrid fillers had better mechanical properties and dynamic performance with higher thermal conductivity, which means that it can be expected to endow the rubber products serving under dynamic conditions with much longer service life. The smaller sized nano‐γ‐Al2O3 particles performed better than the larger‐sized nano‐α‐Al2O3 particles in reinforcing NR. However, the composites filled with nano‐γ‐Al2O3 had lower thermal conductivity than those filled with nano‐α‐Al2O3 and badly deteriorated dynamic properties at loadings higher than 50 phr, both indicating that nano‐γ‐Al2O3 is not a good candidate for novel thermally conductive reinforcing filler. POLYM. COMPOS., 37:771–781, 2016. © 2014 Society of Plastics Engineers  相似文献   

14.
为拓展硅藻土在高分子复合材料中的应用,将硅藻土/白炭黑填充到天然橡胶/丁苯橡胶/顺丁橡胶中制备了复合材料。通过RPA2000和扫描电镜分析了复合填料的Payne效应和分散性,考察了硅藻土用量对复合材料工艺性能、力学性能、耐磨耗性能影响。结果表明:少量硅藻土的加入有利于白炭黑在橡胶中的分散,能降低复合材料的门尼粘度和Payne效应,提高复合材料的硫化速度,缩短硫化时间,复合填料的补强效果较好;随着硅藻土用量的增加,复合填料容易聚集,其力学性能呈下降趋势,而磨耗性能变化不大;当硅藻土用量10~20份时,复合材料的综合性能最好。  相似文献   

15.
Material waste from the production of autoclaved aerated concrete, a porous material, should be considered as a valuable byproduct for use as a filler material for the rubber industry. Natural rubber (NR) composites filled with different loading (over the range of 0–60 phr) of autoclaved aerated concrete waste (AACW) as a new eco‐friendly material were produced using two roll mills and then were studied for their cure characteristics, mechanical and aging properties, and morphology, and also compared with commercial fillers, calcium carbonate (CaCO3), and silica (SiO2). In most cases, the cure characteristics and mechanical and aging properties of the SiO2‐filled NR composites were significantly better than those of the AACW‐ and CaCO3‐filled NR composites. However, these properties for AACW‐filled composites appeared to be higher than CaCO3‐filled composites. The reason for this could be due to a larger surface area which is both porous and of an irregular shape of the AACW filler used. Scanning electron microscope images showed that the morphology of the rubber filled with SiO2 was finer and more homogenous compared with the rubber filled with AACW or CaCO3. Overall results revealed that the reinforcement ability of AACW‐filled NR composites was generally better when compared with CaCO3‐filled NR composites; therefore, AACW can be used effectively as a cheaper filler for production of rubber products where end‐use properties of a rubber product is specifically required. POLYM. COMPOS., 36:2030–2041, 2015. © 2014 Society of Plastics Engineer  相似文献   

16.
Commercial fillers, including carbon black (N550), halloysite nanotubes (HNTs), and precipitated silica, were replaced by recycled poly(ethylene terephthalate) powder (R‐PET) in natural rubber (NR) composites. Five different compositions of NR/N550/R‐PET, NR/HNTs/R‐PET, and NR/silica/R‐PET compounds, i.e., 100/20/0, 100/15/5, 100/10/10, 100/5/15, and 100/0/20 parts per hundred rubber (phr), were prepared on a two‐roll mill. The curing behavior, tensile properties, and morphological characteristics of the natural rubber composites were investigated. The results indicated that the replacement of carbon black, HNTs, and silica by R‐PET decreased the tensile strength and tensile modulus, such that NR/silica/R‐PET composites showed the lowest effect, followed by NR/HNTs/R‐PET and NR/N550/R‐PET composites. The negative effect on these properties can be explained by the decrease of crosslink density. The curing results revealed that with the replacement of carbon black by R‐PET, the scorch time and cure time decreased, but that the NR/HNTs/R‐PET and NR/silica/R‐PET composites exhibited the opposite trend. Scanning electron microscopy investigation of tensile fracture surfaces confirmed that the co‐incorporation of N550/R‐PET improved the dispersion of R‐PET and enhanced the interaction between the fillers and NR matrix more than R‐PET and silica/R‐PET hybrid fillers. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

17.
Summary White rice husk ash (WRHA) and black rice husk ash (BRHA) were incorporated into natural rubber (NR) using a laboratory-sized two-roll mill. A conventional vulcanization system was used for curing and physical tests of the NR vulcanized involved determining of tensile and tear resistances. For comparison purposes, precipitated silica (Zeosil-175) and carbon black (N774) were used too. Using the analysis of variance of single-factor experiments, it can be concluded that: BRHA is non-reinforcing filler and its use is limited to 20 phr; WRHA is semi-reinforcing filler and the variation of filler loading (0 up to 50 phr) causes the maximum variation upon tensile strength of NR compounds; and, that although carbon black and silica are reinforcing fillers, a real reinforcement is reached up to 20 phr for tensile strength.  相似文献   

18.
Abstract

The effect of carbon black on nanoclay filled polychloroprene (CR) composites has been investigated. The nanoclay loading is fixed at 5 part per hundred rubbers (phr), and carbon black loading varied from 5 to 20 phr in rubber compounds. The rubber nanocomposites are prepared in laboratory by mixing in two-roll mill. The addition of nanoclay enhances mechanical properties especially tear strength and decreases water absorption without change in electrical properties compared to gum rubber vulcanisates. Wide angle X-ray diffraction and transmission electron microscopy are used to study the microstructure of CR nanocomposites. The addition of 5 parts of nanoclay to 15 phr carbon black filled samples shows synergistic effect between the fillers and suggests that the reinforcement is due to a more developed filler network formation in hybrid filler system than that in single phase filler. Significant improvement in mechanical, electrical and low water absorption properties has been obtained with these nanoclay and carbon black filled rubber nanocomposites. The paper concludes that nanocomposites containing a mixture of organoclay and carbon black in right proportion can be a substitute for rubber components used in underwater cable and device encapsulation applications.  相似文献   

19.
In this study, we investigated the effects of untreated precipitated silica (PSi) and fly ash silica (FASi) as fillers on the properties of natural rubber (NR) and styrene–butadiene rubber (SBR) compounds. The cure characteristics and the final properties of the NR and SBR compounds were considered separately and comparatively with regard to the effect of the loading of the fillers, which ranged from 0 to 80 phr. In the NR system, the cure time and minimum and maximum torques of the NR compounds progressively increased at PSi loadings of 30–75 phr. A relatively low cure time and low viscosity of the NR compounds were achieved throughout the FASi loadings used. The vulcanizate properties of the FASi‐filled vulcanizates appeared to be very similar to those of the PSi‐filled vulcanizates at silica contents of 0–30 phr. Above these concentrations, the properties of the PSi‐filled vulcanizates improved, whereas those of the FASi‐filled compounds remained the same. In the SBR system, the changing trends of all of the properties of the filled SBR vulcanizates were very similar to those of the filled NR vulcanizates, except for the tensile and tear strengths. For a given rubber matrix and silica content, the discrepancies in the results between PSi and FASi were associated with filler–filler interactions, filler particle size, and the amount of nonrubber in the vulcanizates. With the effect of the FASi particles on the mechanical properties of the NR and SBR vulcanizates considered, we recommend fly ash particles as a filler in NR at silica concentrations of 0–30 phr but not in SBR systems, except when improvement in the tensile and tear properties is required. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 2119–2130, 2004  相似文献   

20.
Natural‐rubber‐based hybrid composites were prepared by the mixture of short cellulose fibers and silica of different relative contents with a 20‐phr filler loading with a laboratory two‐roll mill. The processability and tensile properties of the hybrid composites were analyzed. The tensile modulus improved, but the tensile strength and elongation at break decreased with increasing cellulose fiber content. The scorch safety improved with the addition of 5‐phr cellulose fiber in the composites. The Mooney viscosity significantly decreased with increasing cellulose fiber content. To modify the surface properties of the cellulose fiber and silica fillers, a silane coupling agent [bis(triethoxysilylpropyl)tetrasulfide, or Si69] was used. The effects of Si69 treatment on the processing and tensile properties of the hybrid composites were assessed. We found that the silane treatment of both fillers had significant benefits on the processability but little benefit on the rubber reinforcement. The strength of the treated hybrid composite was comparable to that of silica‐reinforced natural rubber. Furthermore, to investigate the filler surface modification and to determine the mixing effects, infrared spectroscopic and various microscopic techniques, respectively, were used. From these results, we concluded that the fillers were better dispersed in the composites, and the compatibility of the fillers and natural rubber increased with silane treatment. In conclusion, the hybridized use of short cellulose fibers from a renewable resource and silica with Si69 presented in this article offers practical benefits for the production of rubber‐based composites having greater processability and more environmental compatibility than conventional silica‐filler‐reinforced rubber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号