共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermoplastic olefin (TPO)/clay nanocomposites were made with clay loadings of 0.6–6.7 wt %. The morphology of these TPO/clay nanocomposites was investigated with atomic force microscopy, transmission electron microscopy (TEM), and X‐ray diffraction. The ethylene–propylene rubber (EPR) particle morphology in the TPO underwent progressive particle breakup and decreased in particle size as the clay loading increased from 0.6 to 5.6 wt %. TEM micrographs showed that the clay platelets preferentially segregated to the rubber–particle interface. The breakup of the EPR particles was suspected to be due to the increasing melt viscosity observed as the clay loading increased or to the accompanying chemical modifiers of the clay, acting as interfacial agents and reducing the interfacial tension with a concomitant reduction in the particle size. The flexural modulus of the injection moldings increased monotonically as the clay loading increased. The unnotched (Izod) impact strength was substantially increased or maintained, whereas the notched (Izod) impact strength decreased modestly as the clay loading increased. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 928–936, 2004 相似文献
2.
Polypropylene/clay nanocomposites are attractive candidates for applications requiring good barrier properties because of the inherent features of the polymer matrix. To assess their potential, systematic research relating the barrier performance to the structural characteristics of polypropylene/montmorillonite samples has been conducted. The nanocomposites have been tested in the presence of helium, water vapor, toluene, and methanol, and the unmodified matrix has been found to exhibit better properties than its mixtures with the compatibilizer and/or clay. The method for the interpretation of the results proposed in this study considers the composition of the samples, the morphology of the semicrystalline polymer matrix, and the state of dispersion/exfoliation of the clay layers, along with the specific interactions between the solvent molecules and the system components. In this way, several points have been identified for understanding and improving the performance of the nanocomposites. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 618–625, 2007 相似文献
3.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by compounding maleic anhydride‐g‐polypropylene (MAPP) with MMT modified with α,ω‐diaminododecane. Structural characterization confirmed the formation of characteristic amide linkages and the intercalation of MAPP between the silicate layers. In particular, X‐ray diffraction patterns of the modified clay and MAPP/MMT composites showed 001 basal spacing enlargement as much as 1.49 nm. Thermogravimetric analysis revealed that the thermal decomposition of the composite took place at a slightly higher temperature than that of MAPP. The heat of fusion of the MAPP phase decreased, indicating that the crystallization of MAPP was suppressed by the clay layers. PP/MAPP/MMT composites showed a 20–35% higher tensile modulus and tensile strength compared to those corresponding to PP/MAPP. However, the elongation at break decreased drastically, even when the content of MMT was as low as 1.25–5 wt %. The relatively short chain length and loop structure of MAPP bound to the clay layers made the penetration of MAPP molecules into the PP homopolymer phase implausible and is thought to be responsible for the decreased elongation at break. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 307–311, 2005 相似文献
4.
Polypropylene/clay nanocomposites (PPCNs) were prepared via an in situ polymerization method with a Ziegler–Natta/clay compound catalyst in which the MgCl2/TiCl4 catalyst was embedded in the clay galleries. The wide‐angle X‐ray diffraction and transmission electron microscopy results showed that the clay particles were highly exfoliated in the polypropylene (PP) matrix. The nonisothermal crystallization kinetics of these PPCNs were investigated by differential scanning calorimetry at various cooling rates. The nucleation activity were calculated by Dobreva's method to demonstrate that the highly dispersed silicate layers acted as effective nucleating agents. The Avrami, Jeziorny, Ozawa, and Mo methods were used to describe the nonisothermal crystallization behavior of the PP and PPCNs. Various parameters of nonisothermal crystallization, such as the crystallization half‐time, crystallization rate constant, and the kinetic parameter F(t), reflected that the highly exfoliated silicate layers significantly accelerated the crystallization process because of its outstanding nucleation effect. The activation energy values of the PP and PPCNs determined by the Kissinger method increased with the addition of the nanosilicate layers. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
5.
Polypropylene (PP)/montmorillonite (MMT) nanocomposites were prepared by the esterification of propylene‐g‐maleic anhydride (MAPP) with MMT modified with α,ω‐hydroxyamines. The structural characterization confirmed the formation of ester linkages and the interaction between the silicate layers. In particular, X‐ray diffraction patterns of the modified clays and MAPP/MMT composites showed 001 basal spacing enlargement as great as 0.14–0.62 nm according to the type of α,ω‐hydroxyamine. Thermal characterization by thermogravimetric analysis for the composites revealed increased onset temperatures of thermal decomposition. The melting peak temperature decreased, and the crystallization peak temperature increased; this indicated that MMT retarded the crystallization of MAPP. Compounding PP with MAPP/MMT composites enhanced the tensile modulus and tensile strength of PP. However, the elongation at break decreased drastically even when the MMT content was as low as 0.4–2.0 wt %. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1229–1234, 2005 相似文献
6.
In this article, preparation of polypropylene/clay nanocomposites (PPCNC) via in situ polymerization is investigated. MgCl2/montmorillonite bisupported Ziegler‐Natta catalyst was used to prepare PPCNC samples. Montmorillonite (MMT) was used as an inert support and reinforcement agent. The nanostructure of the composites was characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy techniques. Obtained results showed that silica layers of the MMT in these PPCNC were intercalated, partially exfoliated, and uniformly dispersed in the polypropylene matrix. Thermogravimetric analysis showed good thermal stability for the prepared PPCNC. Differential scanning calorimetric was used to investigate both melting and crystallization temperatures, as well as the crystallinity of the PPCNC samples. Results of permeability analysis showed significant increase in barrier properties of PPCNC films. Effective parameters on molecular weight and flow ability of produced samples such as Al/Ti molar ratio and H2 concentration were also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
7.
The thermal aging of polypropylene (PP)/SiO2 nanocomposite films was carried out at 130°C. In contrast to the widely accepted thermal oxidation mechanism, the film ruptured far before the carbonyl group was detected and without a noticeable reduction in the molecular weight. Observations with a polarizing optical microscopy and a scanning electron microscopy demonstrated that, instead of oxidative degradation, at least three other factors were responsible for the rapid deterioration of the PP/SiO2 nanocomposites: (1) recrystallization during the thermal aging, which gave rise to a major volume contraction and, thus, great stress along the spherulite boundaries, which might have induced cracks there (another effect of the recrystallization was the rejection of nanoparticles and defects to the spherulite boundaries, which, therefore, weakened the boundaries); (2) poor interfacial interaction between the matrix and the nanoparticles; and (3) large temperature changes, which created interfacial debonding because of the significant difference in the thermal expansion coefficients of PP and the nanoparticles. The results of this study extend the understanding of the thermal oxidative degradation mechanism of polymer materials. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
8.
The effect of short‐chain amide (AM) molecules on the intercalation of montmorillonite clay has been investigated by the melt blending of polypropylene (PP) with clay in the presence of AM molecules such as 13‐cis‐docosenamide (erucamide). Polypropylene–clay nanocomposites (PPCNs) were prepared by the co‐intercalation of maleic anhydride grafted polypropylene (PP–MA) and an AM compound. The resulting nanocomposite structures were characterized with X‐ray diffraction (XRD) and transmission electron microscopy, whereas the thermal characterization of the PPCNs was conducted by thermogravimetric analysis. XRD results showed that the AM molecules intercalated into clay galleries and increased the interlayer spacing, a result confirmed by surface energy (contact angle) and melt flow index measurements. This additive allowed the formation of an intercalated nanocomposite structure, but an exfoliated PPCN structure was also formed with the use of AM with a PP–MA‐based compatibilizer. A new preparation method for PPCNs was, therefore, developed by the co‐intercalation of AM and PP–MA; this resulted in a significantly improved degree of intercalation and dispersion. The enhanced thermal stability of PPCN, relative to pure PP, further demonstrated the improved clay dispersion in the nanocomposite structures prepared by this method. A possible mechanism for the co‐intercalation of AM and PP–MA into the clay galleries is proposed, based on hydrogen bonding between these additives and the silicate layers. Consideration is also given to possible chemical reactions and physical interactions in this rather complex system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
9.
Syndiotactic polypropylenes (sPPs) with several microstructures (i.e., syndiotacticities and molecular weights) and synthesized by means of two metallocenic catalysts were melt‐blended with 1 and 3 wt % organophilic layered silicates in the presence of a compatibilizer. X‐ray diffraction and transmission electron microscopy analysis showed that the clay was well dispersed in the composites, although the filler morphology depended on the polymer microstructure. Polypropylenes with low syndiotacticities and molecular weights presented the best clay dispersion. Nonisothermal differential scanning calorimetry analysis showed that the polymer microstructure and the clay content modified the thermal behavior of the composites. The compatibilizer and the clay acted as nucleant agents to increase the crystallization temperature of the matrix. Moreover, the double endothermic peak observed during heating scan and associated with the melt/recrystallization/remelt processes of the pure polymer matrix was reduced in the composites. With regard to the mechanical properties under tensile conditions, a synergic effect of the compatibilizer and the clay was observed. In particular, the addition of the compatibilizer alone was able to increase by about 20% the elastic modulus relative to the neat samples, whereas increases between 35 and 50% were measured when the clay was also added, depending on the polymer microstructure. Our results show that the microstructure of sPPs had strong effects on the behavior of its composites with clay in the presence of a compatibilizer. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 相似文献
10.
We used a novel approach to prepare poly(propylene)–clay nanocomposite starting from pristine montmorillonite and reactive compatibilizer hexadecyl trimethyl ammonium bromide. The nanocomposite structure was revealed by X‐ray diffraction and high‐resolution electronic microscopy. The thermal properties of the nanocomposite were investigated by thermogravimetric analysis. An increase of thermal stability was observed. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2586–2588, 2003 相似文献
11.
Maleic anhydride grafted polypropylene (PP‐g‐MA) and organically modified clay composites were prepared in a plasticorder. PP‐g‐MAs, including Polybond PB3150, Polybond PB3200, Polybond PB3000, and Epolene E43, with a wide range of maleic anhydride (MA) concentrations and molecular weights were used. The structure was investigated with X‐ray diffraction (XRD) and transmission electron microscopy (TEM). PP‐g‐MA compatibilizers gave rise to similar degrees of dispersion beyond the weight ratio of 3/1, with the exception of E43, which had the highest MA content and the lowest molecular weight. The thermal instability and high melt index were responsible for the ineffective modification by E43. Furthermore, PP‐g‐MA with a lower molecular weight and a higher melt index had to be compounded at a lower mixing temperature to achieve a reasonable level of torque for clay dispersion. Polypropylene/organoclay nanocomposites were then modified with different levels of PP‐g‐MA compatibilizers with a twin‐screw extruder. The polypropylene/E43/clay system, as shown by XRD patterns and TEM observations, yielded the poorest clay dispersion of the compatibilizers under investigation. The curves of the relative complex viscosity also revealed a systematic trend with the extent of exfoliation and showed promise for quantifying the hybrid structure of the nanocomposites. The mechanical properties and thermal stability were determined by dynamical mechanical analysis and thermogravimetric analysis, respectively. Although PP‐g‐MA with a lower molecular weight led to better clay dispersion in the polypropylene nanocomposites, it caused deterioration in both the mechanical and thermal properties of the hybrid systems. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1667–1680, 2005 相似文献
12.
The melt‐blending method was applied to prepare ternary composites of polypropylene (PP), organic rectorite (OREC), and poly(ethylene octene) elastomer (POE) with a constant content of 2 phr (parts per hundred parts of PP) OREC and 5 or 15 phr POE (PRE25 and PRE215, respectively). At the same time, OREC/PP binary composites with a 2 phr loading of OREC (PR2) and POE/PP systems with 5 or 15 phr POE (E5 and E15, respectively) were prepared to investigate synergistic effects of OREC and POE. Scanning electron microscopy was used to study the distribution of OREC and POE in the matrix, X‐ray diffraction (XRD) and transmission electron microscopy were used to investigate the intercalation performance of OREC in the composites, and polarized light microscopy (PLM) was used to observe the crystallization form and crystallite size. The mechanical properties and dynamic mechanical analysis were also measured. The PRE composites exhibited a multiphase structure, that is, a spherical texture of POE, a plate of clay, and a continuous phase of PP; a larger content of POE produced a larger size, a broader distribution of the spherical phase, and a better intercalation performance of the clay. The E systems were binary phases, that is, a spherical texture of POE and a continuous phase of PP. The crystallite size of the PRE composites was finer than that of pure PP according to XRD data, and this was confirmed by PLM. The impact strength and tensile elongation at break of the PRE composites increased dramatically in comparison with those of the PP, PR2, and corresponding E systems, and this indicated that POE and OREC had synergistic toughening and strengthening effects on PP. The storage modulus of PRE was higher than that of pure PP and lower than that of PR2. There were two glass‐transition temperatures in the PRE systems according to the curve of tan δ; they represented those of pure PP and POE, respectively, and indicated that the PRE systems were physical mixtures. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 1907–1914, 2005 相似文献
13.
Dynamic shear in the axial direction of a rotor was vertically superposed on the melt flow direction, and its effects on the shear rate and melt strength were investigated theoretically. Polypropylene/high‐density polyethylene blends were microcellularly foamed with different vibration parameters. The experimental results were compared with those of a theoretical analysis, and the effects of dynamic shear on the foamability and ultimate cell structure were analyzed in detail. The theoretical results showed that the shear rate and melt strength increased with an increase in the vibration amplitude and frequency. The enhanced melt strength could effectively restrict cell growth, prevent cell rupture, and improve foamability. The experimental results showed that the cell orientation decreased and the cell structure was improved when axial dynamic shear induced by rotor vibrations was superposed on the melt flow direction. Furthermore, the cell diameter decreased and the cell density increased with increases in the vibration amplitude and frequency. The experimental results were very consistent with the theoretical analysis. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
14.
The effect of modifying polypropylene by the addition of long‐chain branches on the rheological properties and performance of foam extrusion was studied. Three polypropylenes, two long‐chain‐branched polypropylenes and a linear polypropylene, were compared in this study. The modification was performed with a reactive‐extrusion process with the addition of a multifunctional monomer and peroxide. The rheological properties were measured with a parallel‐plate and elongational rheometer to characterize the branching degree. The change from a linear structure to a long‐chain‐branched nonlinear structure increased the melt strength and elasticity of polypropylene. Also, there was a significant improvement in the melt tension and sag resistance for branched polypropylenes. Foaming extrusion was performed, and the effect of the process variables on the foam density was analyzed with Taguchi's experimental design method. For this study, an L18(2135) orthogonal array was used on six parameters at two or three levels of variation. The considered parameters were the polypropylene type, the blowing agent type, the blowing agent content, the die temperature, the screw speed (rpm), and the capillary die length/diameter ratio. As a result, the most significant factor that influenced the foam density was the degree of long‐chain branching of polypropylene. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1793–1800, 2005 相似文献
15.
PVC/Na+–montmorillonite (MMT) nanocomposites were prepared via a simple technique of emulsion polymerization at several different MMT clay concentrations. X‐ray diffraction and transmission electron microscopy studies revealed the formation of a mixture of intercalated and exfoliated nanostructure. Tensile testing results showed that the tensile modulus of the nanocomposites increased with the addition of clay, while the tensile strength decreased little. The notched impact strength of the nanocomposites was also improved. For systems containing clay in the range of 2.1 to 3.5 wt %, the impact strength was almost two times as large as that of pure PVC. However, those mechanical properties began to decrease with the continuously increasing amount of clay. The fracture surface of pure PVC and the nanocomposites was observed by scanning electron microscope. Thermal properties of the nanocomposites were found to increase as a result of clay incorporation. The glass transition temperatures of the PVC/clay nanocomposites were nearly identical to that of pure PVC. The Vicat softening points exhibited a progressively increasing trend with the clay content added. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 277–286, 2004 相似文献
16.
Nanocomposites of polypropylene (PP) and montmorillonites (MMT) were prepared by solid‐phase grafting reactive organomontmorillonite (ROMT) and polar monomers onto powdered PP and melt‐blending granule PP with the master batches as PP/MMT grafting copolymers (PPMG). The structure and properties of the PP/MMT nanocomposites (PPMN) were investigated by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD) patterns, transmission electron microscopy (TEM), dynamic mechanical analysis, differential scanning calorimetry, and thermogravimetric analysis. GPC showed that the numerical molecular weight and polydispersity of the graft copolymers of PPMG were approximately 4793 and 2.197, respectively. FTIR confirmed the solid‐phase graft copolymerization. XRD and TEM indicated the formation of the exfoliated, layered silicates (tactoids). The mole ratio of compound alkylammoniums and the exothermic enthalpy from solid‐phase graft copolymerization played key roles in the formation of tactoids. The optimum mole ratio of organophilic alkylammonium to reactive alkylammonium was 3 : 1. The mechanical and thermal properties increased with the contents of PPMG, and a preferable state was achieved at approximately 8 phr PPMG (parts of reagent per 100 parts of PP) because of the plastification of the exfoliated silicates and the graft copolymers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3889–3899, 2006 相似文献
17.
Atactic polypropylene (aPP) was chemically grafted onto attapulgite (ATP) via the bridge linking of a polymerizable cationic surfactant and poly(octadecyl acrylate) in the presence of ultrasonic oscillation and dicumyl peroxide, and then, the modified ATP was added to a polypropylene (PP) matrix to obtain PP nanocomposites by melt blending. The results of Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy confirmed that aPP and poly(octadecyl acrylate) were chemically grafted onto ATP through a graft polymerization reaction. The results of the mechanical properties testing showed that the addition of modified ATP improved the toughness and strength of PP remarkably. The dynamic mechanical analysis indicated that the modified ATP significantly increased the storage modulus and decreased the glass‐transition temperature of PP. The results of scanning electron microscopy and transmission electron microscopy showed that the modified ATP was uniformly dispersed into the PP matrix as crystal needles; this proved the presence of strong interactions between modified ATP and PP. The crystal structure analysis revealed that the β‐form crystalline of PP was formed within the modified ATP. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
18.
In this study, relatively large amounts of polypropylene (PP) and ethylene–propylene–diene (EPDM) were melt‐mixed with multiwalled carbon nanotubes (MWCNTs). Although the melt‐compounding method has many advantages, the uniform dispersion of carbon nanotubes in the polymer matrix is still the most challenging task. Because the electrical conductivity of composites is strongly influenced by the filler's state of dispersion and the extent of filler breakage during processing, the effects of the viscosity and processing conditions, such as the mixing time, rotor speed, and cooling rate, on the surface resistivity were studied. The PP/MWCNT nanocomposites displayed a high dependence of surface resistivity on the cooling rate, and the EPDM/MWCNT nanocomposites displayed a higher surface resistivity at the same content of MWCNTs and less dependence of surface resistivity on the cooling rate compared with PP/MWCNT nanocomposites. The increased surface resistivity of the EPDM/MWCNT nanocomposites was observed when EPDM with higher viscosity was used to prepare the EPDM/MWCNT nanocomposites. By increasing the rotor speed, lower surface resistivity was obtained in the PP/MWCNT nanocomposites. However, by increasing the rotor speed, a higher surface resistivity was obtained in the EPDM/MWCNT nanocomposites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
19.
Pravin Kodgire Rajendra Kalgaonkar Sangeeta Hambir Neelima Bulakh J. P. Jog 《应用聚合物科学杂志》2001,81(7):1786-1792
The morphology and properties of polypropylene (PP)/clay nanocomposites are described. The melt intercalation of organophilic clay was carried out with a single‐screw extruder. The effects of two kinds of treatments of clay are discussed. Maleic anhydride (MAH)‐grafted PP was used as a compatibilizer. The expansion of the intergallery distance of the clay was governed by the interaction between the clay treatment and the compatibilizer. In one case, the composites exhibited significantly reduced intensities of diffraction peaks, suggesting partial exfoliation of the clay layers, whereas for the second clay sample, expansion of the gallery height was noted. The mechanical properties of the PP/clay composites showed significant enhancement in their mechanical and thermal properties. About a 35% increase in the tensile modulus and about a 10% increase in the tensile strength were observed. The thermal degradation temperature increased from 270 to about 400°C as a result of the incorporation of clay, and the extent depended on the dispersion of clay in the composite. The most interesting outcome of this study was the changes in morphology for PP/clay composites, which are reported here for the first time. An optical microscopic study revealed that the PP/clay composites could be crystallized at higher temperatures than pure PP and that the morphology was remarkably altered because of the presence of layers of clay. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 1786–1792, 2001 相似文献
20.
The thermal stability and crystallization kinetics of isotactic polypropylene (iPP) and iPP/organomontmorillonite (organo‐MMT) nanocomposites were investigated with differential scanning calorimetry and thermogravimetry. The incorporation of organo‐MMT up to a concentration of 4 wt % did not affect the melting temperature of iPP but did increase the peak thermal degradation temperature by 60°C. The isothermal crystallization kinetics showed that the addition of organo‐MMT increased the crystallization rate of iPP but reduced the isothermal Avrami exponent. The crystallization temperature of the nanocomposites measured with nonisothermal crystallization was higher than that of plain iPP, and this indicated an enhanced crystallization rate. The nonisothermal Avrami exponent, like the isothermal exponent, decreased with the addition of organo‐MMT, and this suggested changes in the crystallite growth geometry. Subsequently, the tensile yield strength and the tensile modulus both increased, but the elongation at break and the notched Izod impact strength did not change significantly. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3404–3415, 2003 相似文献