首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four types of polyvinyl alcohol (PVA)/iodine complex films were made using different boric acid treatments to prepare polarizing films having high durability under humid and warm atmospheres and to identify the effects of the boric acid treatment method on the formation of the PVA/iodine polarizing film. The four types of films were a PVA iodinated film(I), a PVA film that was iodinated and then treated with boric acid(I‐B), a PVA film that was treated with boric acid and then iodinated(B‐I), and a PVA film that was simultaneously treated with iodine and boric acid(I+B). The concentrations of I2/KI were 0.03, 0.05, and 0.07 mol/L, and the concentrations of boric acid were 0.1, 0.3, and 0.5 mol/L. Comparing four type films treated with 0.05 mol/L I2/KI and 0.5 mol/L boric acid, the conformation of PVA/iodine complexes for I‐B film were larger than the others. The degrees of polarization (ρ) of all of the films increased to very high levels (99.9%↑). The durability of I‐B was superior to B‐I or I+B, and the change in the ρ was below 5% because the boric acid treated after iodine treatment reduced the molecular mobility of the PVA/iodine complex chains through intracrosslinking, so that the PVA/iodine complex could not easily collapse. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

2.
Polyvinyl alcohol/lignosulfonate (PVA/LS) composite films have been prepared using casting technique. The effect of lignosulfonate concentrations (0.001, 0.005, 0.01, 0.05, 0.1 and 0.5 wt %) on the optical and structural properties of polyvinyl alcohol (PVA) has been investigated using UV–vis spectroscopy and X‐ray diffraction. The results indicate that, the addition of LS led to a more compact structure of PVA, which resulted in an increase in its refractive index and amorphous phase. This was associated with a reduction in the optical energy gap that could be attributed to the increase in disorder structural of the composites. Moreover, the transmittance of PVA/LS composite film decreased with the increase of LS doping concentrations onto the PVA matrix. The results reflect the proper dispersion of LS in the PVA matrix that causes a strong intermolecular interaction between LS and PVA suggesting strong hydrogen bond formation between the hydroxyl group in PVA chains and the outer site groups of LS. Further, the transmission of the samples in the wavelength range of 370–780 nm, as well as any color changes, was studied. The color intensity ΔE, which is the color difference between the pure PVA sample and those with different LS concentration, increases with increasing the LS content and was accompanied by an increase in the yellow and red color components. J. VINYL ADDIT. TECHNOL., 25:85–90, 2019. © 2018 Society of Plastics Engineers  相似文献   

3.
In this article, we describe the synthesis of two azobenzene and two stilbene‐based diacetylene chromophores containing terminal electron‐donating (? OCH3) and electron‐withdrawing (? NO2) terminal groups with esterification reactions. The target compounds were characterized by NMR, X‐ray diffraction (XRD), absorption, and photoluminescence spectroscopies. We investigated the structural effects of these photochromic compounds on the E–Z photoisomerization and 1,4‐addition under UV irradiation. 4‐[(4‐Nitrophenyl)‐diazenyl]phenyl pentacosa‐10,12‐diynoate, incorporating the electron‐withdrawing nitro group (? NO2), underwent the fastest rate of Z‐to‐E isomerization in darkness via a rotation mechanism. Our results demonstrate that self‐assembled azobenzene Z isomers exhibited enhanced fluorescence under UV irradiation. XRD spectroscopy identified bilayer packing by the polydiacetylene films after 1,4‐addition. Chromophores comprising the diacetylene group presented moderate photochromic stability upon 1,4‐addition, changing from their original yellowish color to form a blue phase. These synthesized compounds may be useful in the development of new and unique functional materials that exhibit bistable photochromism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
High transparent and UV‐shielding poly (styrene)‐co‐poly(methyl methacrylate) (PS‐PMMA)/zinc oxide (ZnO) optical nanocomposite films were prepared by solution mixing using methyl ethyl ketone (MEK) as a cosolvent. The films were characterized by X‐ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–vis) spectra, high‐resolution transmission electron microscopy (HR‐TEM), and atomic force microscope (AFM). Cross‐section HR‐TEM and AFM images showed that the ZnO nanoparticles were uniformly dispersed in the polymer matrix at the nanoscale level. The XRD and FTIR studies indicate that there is no chemical bond or interaction between PS‐PMMA and ZnO nanoparticles in the nanocomposite films. The UV–vis spectra in the wavelength range of 200–800 nm showed that nanocomposite films with ZnO particle contents from 1 to 20 wt % had strong absorption in UV spectrum region and the same transparency as pure PMMA‐PS film in the visible region. The optical properties of polymer are greatly improved by the incorporation of ZnO nanoparticles. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
A series of carboxymethyl chitosan (CMC) with 2.4‐dihydoxybenzophenone (UV‐0) substituent were synthesized by the Mannich reaction of CMC hydrochloride and UV‐0 in the solvent of methanol and water. The different molar degree of substitution (MS) was achieved by changing the UV‐0 content. The effects of MS on ultraviolet absorbability, crystallinity, moisture‐absorption and ‐retention property, and photostability were investigated respectively. The obtained products were characterized by means of Fourier transform infrared spectra (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR), X‐ray diffraction, and UV spectrophotometer. It was found that the grafted products were water‐soluble, and the increased MS values could enhance the moisture‐retention property and photostability, while decreased the crystallinity and moisture‐absorption property. The ultraviolet absorption peaks became stronger by introducing UV‐0 into the CMC backbones. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
The biodegradability and dyeing properties of a series of dextrin‐derivative surfactants in direct‐dye cotton‐dyeing systems have been studied. It was found that these surfactants have good biodegradability, which is lacking in traditional dyeing auxiliaries. In dye‐surfactant systems, the degree of aggregation of direct dyes with surfactants was found to influence the rate of cotton dyeing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 2620–2624, 2007  相似文献   

7.
Polyvinyl alcohol (PVA) films filled with different concentrations of CoBr2 were prepared using the casting method. These films were characterized by FTIR, UV–visible, XRD, and ESR techniques. FTIR spectra were used to clarify the structural variations due to the filling level from CoBr2. The observed bands at 3484, 1733, and 1640 cm?1 were assigned to O? H, C?O, and C?C stretching vibrations, respectively. UV–visible spectra shows the absorption band at 280 nm which is assigned to π → π* transition. This indicates the presence of unsaturated bonds in tail to head of PVA. Optical energy gap decreased with increasing the concentration of CoBr2. X‐ray diffraction scans show some decrease in the degree of crystallinity in the filled films which reveals an increase in amorphous phase of PVA due to the interaction between Co+2 and polymeric matrix causing a molecular rearrangement within the amorphous phase of PVA. The observed complex ESR spectrum due to hyperfine interactions confirms the role of free radicals. Spectroscopic and magnetic properties of PVA/CoBr2 composite films were investigated and compared with those of PVA alone. The results show that the change of the structure due to the interaction of filler with the polymer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Poly(3‐methylthiophene) (P3MT)‐coated polyester fabric is a conductive textile with specific electrical and optical properties; for instance, color change under external stimulus (chromic behavior) was successfully prepared by chemical polymerization with continuous, speed stirring technique. To investigate the striking effect of some variable conditions of polymerization process, the effect of reaction time, temperature, and oxidant concentration on conductivity of the P3MT‐coated fabric was studied. Scanning electron microscopy confirmed that the surface of fabric has entirely been coated with P3MT particles. The further characterizations were investigated using Fourier transform infrared spectroscopy to provide evidence of forming particles onto the fabric, UV–vis absorption spectroscopy, electrical surface resistivity, and pressure dependence visible reflectance spectrophotometer measurements and X‐ray diffraction analysis. The blue shift in wavelength of maximum absorption of about 95 nm to a longer wavelength from that observed in the reflectance spectra of coated polyester fabric; under high‐pressure P3MT‐coated polyester fabric demonstrated piezochromism. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
A new polymeric Schiff base containing formaldehyde and 2‐thiobarbituric acid moieties was synthesized by the condensation of a monomeric Schiff base derived from 2‐hydroxyacetophenone and hydrazine. Polymer–metal complexes were also synthesized by the reaction of the polymeric Schiff base with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) acetate. The polymeric Schiff base and its polymer–metal complexes were characterized with magnetic moment measurements, elemental analyses, and spectral techniques (infrared, 1H‐NMR, and ultraviolet–visible). The thermal behaviors of these coordination polymers were studied by thermogravimetric analysis in a nitrogen atmosphere up to 800°C. The thermal data revealed that all of the polymer–metal complexes showed higher thermal stabilities than the polymeric Schiff base and also ascribed that the Cu(II) polymer–metal complex showed better heat resistant properties than the other polymer–metal complexes. The antimicrobial activity was screened with the agar well diffusion method against various selected microorganisms, and all of the polymer–metal complexes showed good antimicrobial activity. Among all of the complexes, the antimicrobial activity of the Cu(II) polymer–metal complex showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
A series of monomeric azobenzene derivatives of 6‐(4‐nitro‐4′‐oxy‐azobenzene acrylate with carbon numbers of 6 and 11, and the chiral monomer of bornyl 4‐(6‐acryloyloxyhexyloxy)‐phenyl‐4′‐benzoate were synthesized. Chiral polymers having bornyl group end‐capped pendants with azobenzene‐derived segments were prepared. Molecular structures and polymer compositions were confirmed by using 1H‐NMR, elemental analysis, FTIR, and UV–vis analyzers. Thermodynamic properties of both monomers and polymers were investigated. Specific rotations of chiral monomers and polymers were estimated by using an automatic digital polarimeter. Liquid crystalline textures of monomers and polymers were analyzed by using a polarizing optical microscope and confirmed by a small‐angle X‐ray analyzer. The optical reflection characteristics of composite cells with chiral nematic liquid crystal and various amounts of azobenzene derivatives were evaluated by using a UV–vis spectrophotometer. The reliability and stability of the composite cells with E48/S811 and azobenzene derivatives were studied. The photoisomerization of the chiral polymer film was investigated by using SEM and AFM analyzers. It was found that the UV irradiation of a laser spot caused the shrinkage of polymer film due to the photoisomerization of azobenzene segments. The contraction of the polymer film can be recovered by heat treatment. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3693–3704, 2004  相似文献   

11.
A mechanically flexible mat consisting of structurally amorphous SiO2 (glass) nanofibers was first prepared by electrospinning followed by pyrolysis under optimized conditions and procedures. Thereafter, two types of hybrid multi‐scale epoxy composites were fabricated via the technique of vacuum assisted resin transfer molding. For the first type of composites, six layers of conventional glass microfiber (GF) fabrics were infused with the epoxy resin containing shortened electrospun glass nanofibers (S‐EGNFs). For the second type of composites, five layers of electrospun glass nanofiber mats (EGNF‐mats) were sandwiched between six layers of conventional GF fabrics followed by the infusion of neat epoxy resin. For comparison, the (conventional) epoxy composites with six layers of GF fabrics alone were also fabricated as the control sample. Incorporation of EGNFs (i.e., S‐EGNFs and EGNF‐mats) into GF/epoxy composites led to significant improvements in mechanical properties, while the EGNF‐mats outperformed S‐EGNFs in the reinforcement of resin‐rich interlaminar regions. The composites reinforced with EGNF‐mats exhibited the highest mechanical properties overall; specifically, the impact absorption energy, interlaminar shear strength, flexural strength, flexural modulus, and work of fracture were (1097.3 ± 48.5) J/m, (42.2 ± 1.4) MPa, (387.1 ± 9.9) MPa, (12.9 ± 1.3) GPa, and (30.6 ± 1.8) kJ/m2, corresponding to increases of 34.6%, 104.8%, 65.4%, 33.0%, and 56.1% compared to the control sample. This study suggests that EGNFs (particularly flexible EGNF‐mats) would be an innovative type of nanoscale reinforcement for the development of high‐performance structural composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42731.  相似文献   

12.
Novel chiral monomers derived from (?)‐camphor and difunctional monomers with biphenyl segments were synthesized. The molecular structures were identified using FTIR, NMR, and elemental analyses. Surface pretreated polymer stabilized cholesteric texture (PSCT) cells with various chiral nematic components were prepared. According to theory, they are kind of reversed mode PSCT cells. The helical twisting power (HTP) and pitches of the PSCT cells were evaluated. The polarized optical microscopic (POM) textures and the dependence of the optical properties on the applied voltage of the PSCT cells were investigated. The reflection band of the PSCT cells before and after UV irradiation were estimated. A blue shift of selective reflection of the PSCT cells was obtained after UV irradiation. PSCT cells with various reflecting colors and the dependence of the transmittance of the cells on applied voltage were investigated. Real image recording through a mask as well as the transmittance of PSCT cells controlled by applied voltage were also confirmed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 88–96, 2005  相似文献   

13.
Several poly(pyridinium salt)s containing various organic counterions and tetraoxyethylene units in their backbones were synthesized by either ring‐transmutation polymerization reaction of 4,4'‐(1,4‐phenylene)bis(2,6‐diphenylpyrylium tosylate) with bis(2‐(2‐(4‐aminophenoxy)ethoxy)ethyl) ether on heating in dimethyl sulfoxide or metathesis reaction of the tosylate polymer with the corresponding lithium or sodium salts in acetonitrile. Their chemical structures were determined by 1H‐NMR and 13C‐NMR spectroscopy, and elemental analyses. Their number‐average molecular weights and polydispersity indices were in the range of 34,000–52,000 and 1.14–1.38, respectively, as determined by gel permeation chromatography. They were characterized both for their thermotropic and lyotropic liquid‐crystalline properties by using differential scanning calorimetry and polarizing optical microscopy. As these polymers exhibited liquid‐crystalline phase both in the melt and in solutions, they are classified as an amphotropic class of ionic polymers. Their light‐emitting properties in a large number of organic solvents that ranged from nonpolar to polar solvents and in films cast from methanol and acetonitrile were also studied by using spectrofluorometry. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
Cellulose acetate thin films doped with erbium (III) chloride (ErCl3) of different concentrations were prepared by the solution method. The prepared composite films were characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis. IR spectral analysis, UV–visible absorption, a.c. conductivity, and dielectric properties were investigated. The studied ErCl3‐doped samples showed different properties from those of their pure components. SEM micrographs showed that for small dopant concentrations, samples tend to form conducting nanostructures with negligible particle agglomeration. DSC showed a monotonic development of the glass transition temperature by increasing the concentration of dopant material. Variation in the height, shape, and position of the bands in infrared transmission spectra, as well as the glass transition temperatures, indicated a complex interaction with the polymer molecular chains. Thermal stability and thermodynamic parameters were found to be concentration dependent. The electronic transitions’ band gabs and energy tails were calculated from the optical data. The dielectric studies showed that the correlated barrier hopping model was the dominant mechanism of a.c. conductivity. We found that samples with 10% and 20% ErCl3 exhibited high dielectric constants and have pronounced electrostriction and relaxor‐like properties. Such samples can be used in many applications like electromechanical and thermomechanical transducers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45220.  相似文献   

15.
Three alternating conjugated copolymers of cyanosubstituted poly(p‐phenylene vinylene) (CN–PPV) with phenylene ethynylene and thienylene vinylene moieties, P1, P2, and P3, were synthesized via cross‐coupling polycondensation with Pd(PPh3)2Cl2 as a catalyst. Their structures were confirmed by 1H‐NMR, IR spectroscopy, elemental analysis, and gel permeation chromatography, and the thermal, photophysical, and electrochemical properties of the copolymers were also investigated. The incorporation of a triple bond into the CN–PPV backbone led to higher reduction potentials, which corresponded to lower lowest unoccupied molecular orbital energy levels. The three copolymers possessed broader absorption spectra, especially copolymer P3 with its polymerization units containing two thiophene rings, which showed the broadest absorption spectrum, from 300 to 710 nm. Their high electron affinities, broad absorptions, and relatively higher oxidation potentials make the copolymers potentially good electron‐acceptor material for use in photovoltaic devices. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Differential scanning calorimetry, thermogravimetric analysis, X‐ray diffraction, and ultraviolet–visible spectroscopy of gelatin and poly(vinyl alcohol) (PVA) homopolymers and their blended samples were studied. The data revealed that the gelatin and PVA polymers were compatible over the investigated range of compositions; this contributed to the formation of hydrogen‐bonding interaction between their polar groups. The associated enthalpy‐of‐melting transition and thermal stability of the blended samples increased with increasing PVA content. This indicated that the crystalline structure of PVA was not destroyed completely in the blends, which was consistent with the X‐ray diffraction pattern of the 50/50 (wt %/wt %) blended gelatin/PVA sample. The absorption edge and optical band gap for allowed direct transition were determined from ultraviolet–visible spectra. The induced changes in the band structure are elucidated. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
18.
Cycloaliphatic epoxy oligosiloxane resins with a high degree of condensation (>85%) were synthesized by a nonhydrolytic sol–gel reaction using 2‐(3,4‐epoxycyclohexyl)ethyltrimethoxysilane (ECTS), diphenylsilanediol (DPSD), and triphenylsilanol (TPS). Cycloaliphatic epoxy hybrimers with 2 mm thickness fabricated by thermal curing of cycloaliphatic epoxy oligosiloxane resins with a hardener and catalyst were optically transparent (~90%) with a high refractive index of up to 1.583. The fabricated hybrimers also show high thermal resistance having no yellowing during thermal aging at 120°C for 1008 h and a high decomposition temperature (>300°C). On the strengths of these characteristics, the hybrimers are expected to find application as LED encapsulants. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

19.
The importance of antibacterial materials for biomedical applications is growing nowadays. The presented article deals with the characterization of structural, mechanical and thermal properties and of antibacterial polymeric films based on polyvinyl alcohol (PVA) and silver nitrate, which can find their applicability in wound dressing components and protective coating. The methods of transmission electron microscopy, UV–vis and XRD spectroscopy, optical microscopy, differential scanning calorimetry, stress–strain analysis, and agar diffusion test were used to characterize the polymer films prepared. The results showed strong antibacterial activity against Escherichia coli and Staphylococcus aureus already at the lowest addition level of silver nitrate. An improvement of mechanical properties (Young's modulus) was also noticed due to a modification of PVA with silver nitrate up to 1 wt. % of silver content. Furthermore, the results show a strong effect of the thermal history of the sample preparation on the degree of silver‐ion reduction and formation of nanoparticles. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

20.
Two new poly(arylene ethynylenes) were synthesized by the reaction of 1,4‐diethynyl‐2.5‐dioctylbenzene either with 4,4′‐diiodo‐3,3′‐dimethyl‐1,1′‐biphenyl or 2,7‐diiodo‐9,9‐dioctylfluorene via the Sonogashira reaction, and their photoluminescence (PL) and electroluminescence (EL) properties were studied. The new poly(arylene ethynylenes) were poly[(3,3′‐dimethyl‐1,1′‐biphenyl‐4,4′‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEBE) and poly[(9,9‐dioctylfluorene‐2,7‐diyl)‐1,2‐ethynediyl‐(2,5‐dioctyl‐1,4‐phenylene)‐1,2‐ethynediyl] (PPEFE), both of which were blue‐light emitters. PPEBE not only emitted better blue light than PPEFE, but it also performed better in EL than the latter when the light‐emitting diode devices were constructed with the configuration indium–tin oxide/poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonic acid) (50 nm)/polymer (80 nm)/Ca:Al. The device constructed with PPEBE exhibited an external quantum efficiency of 0.29 cd/A and a maximum brightness of about 560 cd/m2, with its EL spectrum showing emitting light maxima at λ = 445 and 472 nm. The device with PPEFE exhibited an efficiency of 0.10 cd/A and a maximum brightness of about 270 cd/m2, with its EL spectrum showing an emitting light maximum at λ = 473 nm. Hole mobility (μh) and electron mobility (μe) of the polymers were determined by the time‐of‐flight method. Both polymers showed faster μh values. PPEBE revealed a μh of 2.0 × 10?4 cm2/V·s at an electric field of 1.9 × 105 V/cm and a μe of 7.0 × 10?5 cm2/V·s at an electric field of 1.9 × 105 V/cm. In contrast, the mobilities of the both carriers were slower for PPEFE, and its μh (8.0 × 10?6 cm2/V·s at an electric field of 1.7 × 106 V/cm) was 120 times its μe (6.5 × 10?8 cm2/V·s at an electric field of 8.6 × 105 V/cm). The much better balance in the carriers' mobilities appeared to be the major reason for the better device performance of PPEBE than PPEFE. Their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels were also a little different from each other. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 299–306, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号