首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glass‐forming ability and thermal stability of novolac–phenolic resin with different contents of curing agent hexamethylenetramine (HMTA) are investigated. Melt fragility (Mg) and Tgd (Tgd = Tg/Td) are proposed to characterize glass‐forming ability and thermal stability of the novolac–phenolic resin, respectively. It is found that Mg has a negative linear relationship with Tgd. The lower Mg represents the better glass‐forming ability of liquid phenolic resin while the higher Tgd represents the better thermal stability of the fully cured phenolic resin. Further more, Mg establishes a kinetic relationship between glass‐forming ability of liquid uncured and thermal stability of fully cured novolac–phenolic resin in terms of comparing with Tgd. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

2.
Phenolic resin/poly(dimethylsiloxane adipamide) (PDMSA) blends, which have been prepared, show miscibility due to intermolecular H‐bonding existing between phenolic resin and the PDMSA. The specific H‐bonding of novolac type phenolic/PDMSA blends was characterized by means of glass transition temperature behavior and Fourier Transform Infrared Spectroscopy (FTIR). The strength of intermolecular H‐bonding within the phenolic blend is a function of the H‐bonded group of the PDMSA modifier and corresponds to the deviation glass transition temperature (ΔTg). Phenolic/PDMSA blends were completely miscible, as confirmed by the Tg study. The FTIR result is in good agreement with the inference from Tg behavior. The char yield of phenolic/PDMSA corresponds to the phenolic resin content. The molecular mobility of phenolic/PDMSA blends increases with PDMSA content in the phenolic‐rich region. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 984–992, 2002  相似文献   

3.
The effects of hygrothermal aging history and initial water content on sorption behavior and the physical properties of a commercial particle‐filled epoxy‐based adhesive were studied by the analysis of the water reabsorption process. ATR‐FTIR analysis was performed to characterize the hydrogen bond interactions among the water and either resin or fillers. Swelling behavior and the depression of the glass transition temperature (Tg) under different hygrothermal aging histories were related to the water in the apparent free volume of the adhesive. The results show that the water diffusion of the adhesive is a non‐Fickian process. It is also observed that swelling (which is reversible and consistent with hydrogen bond formation) and the rate of diffusion are not only dependent on the hygrothermal temperature but also the hygrothermal history. In addition, the swelling observed on the reabsorption process does not alter the apparent free volume of this adhesive system, and Tg depression is independent of the final equilibrium water content of the system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1581–1591, 2002; DOI 10.1002/app.10447  相似文献   

4.
Fully bio‐based soy protein isolate (SPI) resins were toughened using natural rubber (NR) and epoxidized natural rubber (ENR). Resin compositions containing up to 30 wt % NR or ENR were prepared and characterized for their physical, chemical and mechanical properties. Crosslinking between SPI and ENR was confirmed using 1H‐NMR and ATR‐FTIR. All SPI/NR resins exhibited two distinctive drops in their modulus at glass transition temperature (Tg ) and degradation temperature (Td ) at around ?50 and 215 °C, corresponding to major segmental motions of NR and SPI, respectively. SPI/ENR resins showed similar Tg and Td transitions at slightly higher temperatures. For SPI/ENR specimens the increase in ENR content from 0 to 30 wt % showed major increase in Tg from ?23 to 13 °C as a result of crosslinking between SPI and ENR. The increase in ENR content from 0 to 30 wt % increased the fracture toughness from 0.13 to 1.02 MPa with minimum loss of tensile properties. The results indicated that ENR was not only more effective in toughening SPI than NR but the tensile properties of SPI/ENR were also significantly higher than the corresponding compositions of SPI/NR. SPI/ENR green resin with higher toughness could be used as fully biodegradable thermoset resin in many applications including green composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44665.  相似文献   

5.
In this article, we report the modification of poly(styrene-alt-maleic anhydride) (PSMA) with monofunctional amine-terminated poly(dimethyl siloxane) (PDMS–NH2) by thermal imidization, followed by the preparation and characterization of a surfactant-free artificial latex thereof and application of this latex onto cotton fabric. The imidization reaction was monitored by NMR and attenuated total reflection Fourier transform infrared (ATR–FTIR) spectroscopy. 1,2-Cyclohexyldicarboxylic anhydride was chosen as a model compound for the PSMA copolymer; this allowed a more detailed characterization by NMR and ATR–FTIR spectroscopy. After the PSMA/PDMS–NH2 imidization reached completion, a fraction of the anhydrides were ammonolyzed. In this way, a self-emulsifying latex with an average particle diameter of approximately 145 nm and a ζ potential of −56 mV was obtained. It was found that the PDMS-modified PSMA latex in which 30 mol% of the initial amount of anhydride groups were previously imidized by using PDMS-NH2 and a fraction of the anhydrides were ammonolyzed with 0.3 eq. of NH3 (PSMA30) was stable in the pH range 4–10. The water contact angle values of the latex-coated cotton textile fabric indicated a hydrophobized surface, with a static contact angle of 135.7°± 1.2°. The washing studies with a standard soap solution of the cotton samples with or without crosslinker showed that the crosslinked PSMA30 offered a good coating durability to the cotton. This waterborne resin based on surfactant-free latices displayed promising properties for coating applications and seemed to be very suitable for the hydrophobization of polar surfaces. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
Chemoviscosity and glass‐forming ability of commercial phenolic–novolac resin are investigated at hexamethylenetramine (HMTA) curing agent content weight from 6 to 9%. We propose a parameter, Mk, which is based on chemoviscosity change rate and Tg0 of uncured liquid resin, to predict glass‐forming ability of the fully cured phenolic–novolac resin. It is found that Mk has a negative linear relationship with Tg∞, and the lower Mk represents the better glass‐forming ability of initial phenolic–novolac uncured liquid resin while the higher Tg∞ represents the better glass‐forming ability of fully cured resin. Further more, Mk establishes a kinetic glass‐forming relationship between liquid uncured and fully cured phenolic–novolac resin in terms of comparing with Tg∞. POLYM. COMPOS., 2012. © 2011 Society of Plastics Engineers  相似文献   

7.
In this article, the hot air aging of high strength glass fiber fabric/epoxy novolac resin (SW/EPN) composites was investigated by the aid of the aging behavior of EPN, mainly focusing on the microstructure evolvement of SW/EPN composites. The aging mechanism and thermal mechanical properties of SW/EPN composites were analyzed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, thermo‐gravimetric analyzer coupled with Fourier transform infrared spectrometry, and dynamic mechanical thermal analysis. The results showed that micro cracks initiated and propagated at the fiber–matrix interphase because of the heat and oxygen effect. After long‐time aging at elevated temperatures, delamination phenomenon was discovered in SW/EPN composites. The results of weight changes showed that the degradation of EPN played a major role in SW/EPN composites. Moreover, the degradation of EPN contained post‐curing, oxidation, and decomposition. The results also revealed that unaged EPN indicated two glass transition temperatures (Tg1 and Tg2). Tg1 increased for post curing while Tg2 decreased for oxidation with increasing of aging time and temperature. In the final period of aging at higher temperatures, only one Tg was observed because the formation of perfect crosslinked networks made EPN homogeneous. In addition, the relationship between Tg and chemical structure, as well as Tg and mass loss, confirmed that the variation of Tg depended on chemical changes. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40128.  相似文献   

8.
The surface modification of poly(vinyl chloride) (PVC) tubing by heparin was performed to increase its blood compatibility. A solution of benzalkonium heparinate was used in the treatment of two types of plasticized PVC. The modification of the PVC surface was monitored after various treatment conditions, and quantitative results were obtained by using ATR‐FTIR spectroscopy. The treatment times and the PVC type have a strong influence on the observed amount of heparin. A partial removal (20–30 %) of heparin was observed after rinsing the PVC surface with a 0.9 wt% NaCl aqueous solution. The more flexible PVC tubing, having a lower Tg, had a higher concentration of heparin. Final heparin concentrations on the PVC surfaces were found to be in the range 1–17 µg cm?2. Copyright © 2004 Society of Chemical Industry  相似文献   

9.
In this article, phenolic nanocomposites were prepared using styrene–butadiene rubber (SBR) nanoparticles with an average particle size of about 60 nm as the toughening agent. The mechanical and thermal properties of phenolic nanocomposites and the toughening mechanism were studied thoroughly. The results showed that when adding 2.5 wt % SBR nanoparticles, the notched impact strength of phenolic nanocomposites reached the maximum value and was increased by 52%, without sacrificing the flexural performance. Meanwhile, SBR nanoparticles had no significant effect on the thermal decomposition temperature of phenolic nanocomposites. The glass‐transition temperature (Tg) of phenolic nanocomposites shifted to a lower temperature accompanying with the increasing Tg of loaded SBR, which showed there was a certain compatibility between SBR nanoparticles and phenol‐formaldehyde resin (PF). Furthermore, the analysis of Fourier transform infrared spectroscopy and X‐ray photoelectron spectroscopy indicated that there existed a weak chemical interaction between SBR nanoparticles and the PF matrix. The certain compatibility and weak chemical interaction promoted the formation of a transition layer and improved the interfacial bonding, which might be important reasons for the great enhancement of the toughness for phenolic nanocomposites. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41533.  相似文献   

10.
Three classes of inorganic–organic hybrid phenolic resin/polyhedral oligomeric silsesquioxane (POSS) nanocomposites were synthesized. Multifunctional dichloromethylsilylethylheptaisobutyl-POSS (POSS-1), trisilanolheptaphenyl-POSS (POSS-2), and poly(phenylsilsesquioxane) uncured POSS (POSS-3) were employed. Nonfunctional POSS-4 (octaisobuty1-POSS) was blended into the uncured phenolic resin and cured under the same conditions used for the other three nanocomposite classes. Weight ratios of 99/1, 97/3, 95/5 and 90/10 were prepared for the POSS-1, 2 and 4 series and 99/1, 97/3 and 95/5 ratios for the POSS-3 nanocomposites. POSS-1 incorporation into this phenolic resin network increases T g and broadens the tan peak (DMTA) range. T g and E′ values at T>T g both increase with higher POSS-1 content. In contrast, incorporating 5 wt% of POSS-2 into the phenolic resin network lowers T g to 193 from 213°C for the neat phenolic resin. All values of E′ for POSS-2 composites were higher, than those of the phenolic control in both glassy and rubbery regions. The T g values of the 1 and 10% POSS-2 systems were higher. Incorporating 10 wt% of POSS-1 or POSS-2 improved the heat distorsion temperature and moduli (E′=123 and 201 GPa at 265°C, respectively, versus 56 GPa for the pure phenolic resin). Increases in E′ for T>T g and T<T g were also observed for all POSS-3 nanocomposites. However, the E′ at T>T g and the T g values of the POSS-4 composites were lower than those of the control resin. Octaisobutyl POSS-4 cannot form chemical bonds to the resin and could be extracted from its composites with THF. POSS derivatives were not present in residues extracted by THF from the phenolic resins containing POSS-1, 2 or 3, because each of these derivatives were chemically bound within the phenolic resin. Subsequent heating cycles produce much larger increases in T g and E′ values in the rubbery region for the POSS-1, 2 and 3 composites than for the neat phenolic resin or for the POSS-4 systems. An erratum to this article can be found at  相似文献   

11.
A series of silyl ether amine curing agents were synthesized by selective substitution reactions of chloroalkylsilanes or the transetherification of alkoxysilanes. Crosslinked networks were prepared by mixing a stoichiometric ratio of bisphenol A diglycidyl ether (D.E.R 331) with the amine curing agents. The networks were characterized by ATR‐FTIR spectroscopy, TGA, DSC, and DMA. The onset of thermal degradation, glass transition temperatures, and storage moduli for the networks were 350 °C, 70–108 °C, and 5–25 MPa, respectively. The degradation behavior of the cured samples was monitored for 30 days in PBS, NaOH 5% (w/v), and HCl 5% (v/v) solutions and the degradation products were characterized by spectroscopic methods. The thermal, mechanical, and degradation studies indicated that crosslink density, Tg, storage modulus, and the rate of degradation were affected by the functionality of the amine curing agents and the number of hydrolyzable silyl ether bonds present per mole of curing agent. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44620.  相似文献   

12.
The effects of physical aging of a 75 : 25 PC/ABS blend have been studied using differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). From DSC, two distinct peak endotherms at about 90°C and 110°C, which are associated with the glass transition of ABS (Tg,ABS) and PC (Tg,PC) components, respectively, were observed. When progressive aging was monitored at 80°C for over 1000 h, the changes in enthalpic relaxation, glass and fictive temperatures for the blend followed similar trends to those already seen in the literature for PC aged between 125 and 130°C. The rate of enthalpy relaxation was also comparable. The plot of peak endotherm against logarithmic aging time for the PC blend constituent, however, behaved quite differently from the linear relationship known for highly aged PC. The ABS peak component also appeared to be insensitive to aging. Both observations were confirmed to be statistically significant using analysis of variance methods. Using temperature modulated‐DSC, there is evidence that aging increases the blend miscibility as the Tg,PC shifts toward the stationary Tg,ABS during aging. Parallel FTIR investigations found oxidation of butadiene during aging to be even at this relatively low temperature, forming hydroxyl and carbonyl degradation products. The presence of ABS in the blend also appeared to have prevented the shifting from the trans‐cis to trans‐trans arrangement of the carbonate linkage, which is a well‐known phenomenon during elevated temperature aging of PC alone. Moreover, the carbonate linkage appears to have been at the lower energy, trans‐trans, arrangement prior to the aging process. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Abstract

This paper presents the results of an investigation of the biaxial stress–strain behaviour of filament wound glass fibre reinforced composite pipes exposed to high temperature water. Two matrix systems were investigated: cycloaliphatic amine cured epoxy resin; and siloxane modified phenolic alloy. Water absorption tests on pipe using the two systems at 95°C showed equilibrium moisture contents of 0.5 and 4.5%, respectively, saturation being achieved within seven days at this temperature in both cases. The axial moduli of the pipes were determined at temperatures up to 160°C, using a bending test. Reductions were observed in the T g of both systems in the water saturated condition. Biaxial loading tests were carried out on the two pipe systems at temperatures from 20 to 160°. The results are presented in the form of failure envelopes and stress–strain relationships under load. At the highest temperatures (above its T g ), significant weakening of the epoxy system was observed, especially in matrix dominated loading conditions. In contrast, the failure envelopes for the phenolic system showed remarkably little temperature influence.  相似文献   

14.
Organic solvents cyclohexane, dichloromethane, hexane, and tetrahydrofuran were tested to separate the dioctylphthalate (DOP) as plasticizer from the poly(vinyl chloride) (PVC)‐based materials. It was found that the efficiency of ultrasound‐enhanced hexane extraction of the DOP from PVC is 70% and the efficiency of the separation of the DOP and other compounds from the PVC by dissolution in THF followed by subsequent precipitation was 98–99%. Differential scanning calorimetry (DSC) and thermogravimetry (TG) were used to characterize the thermal behavior of PVC materials before and after extraction of plasticizers. It was found that during heating in the range 20–800°C the total mass loss measured for the nontreated, extracted, and precipitated PVC samples was 71.6, 66.6, and 97%, respectively. In the temperature range 200–340°C, the release of DOP, HCl, and CO2 was observed by simultaneous thermogravimetry (TG)/FTIR. The effect of plasticizers on thermal behavior of PVC‐based insulation material was characterized by DSC in the range ?40–140°C. It was found that, concerning the PVC cable insulation material before treatment, the value of the glass transition temperature (Tg) was 1.4°C, whereas for the PVC sample extracted by hexane, the value of Tg was 39.5°C and for the PVC dissolved in THF and subsequently precipitated, the value of Tg was 80.4°C. Moreover, the PVC samples after extraction of plasticizers, fillers, and other agents were tested to characterize their thermal degradation. The TG and FTIR results of chemically nontreated, extracted, and precipitated samples were compared. The release of DOP, HCl, CO2, and benzene was studied during thermal degradation of the samples by FTIR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 788–795, 2006  相似文献   

15.
The miscibility and phase behavior of poly(4-vinylphenol-co-methyl methacrylate) (PVPhMMA50) containing 50% of methyl methacrylate with random copolymers of poly(styrene-co-4-vinylpyridine) (PS4VPy) containing 5, 15, 30, 40, and 100% of 4-vinylpyridine, respectively, were investigated by differential scanning calorimetry, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). It was shown that for a composition of 4-vinylpyridine less than 30%, all blends of PVPhMMA50/PS4VPy are immiscible, characterized by the apparition of two glass transitions (Tg) over their entire composition range. However, above this composition, a single Tg has been observed in all the blends of PVPhMMA50 and PS4VPy. When the amount of vinylpyridine exceeds to 40% in PS4VPy, the obtained Tgs of PVPhMMA50/PS4VPy blends were found to be significantly higher than those observed for each individual component of the mixture indicating that these blends are able to form interpolymer complexes. FTIR analysis reveals the existence of preferential specific interactions via hydrogen bonding between the hydroxyl and pyridyl groups and intensifies when the amount of 4VPy is increased in PS4VPy copolymers. Furthermore, the quantitative FTIR study carried out for PVPhMMA50/PS4VPy blends was also performed for the vinylphenol and vinylpyridine functional groups. These results were also confirmed by SEM study. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Short term isothermal aging of a neat epoxy resin and one ply epoxy-carbon fiber composite has been performed. The glass transition temperature, Tg of the neat epoxy resin aged at 204°C increased with aging time. The weight loss of the neat epoxy resin due to aging increased with aging temperature and aging time. The weight loss of the epoxy–carbon fiber composite during aging was slightly less than that of the neat resin. SEM microscopy showed the presence of voids and pores on the surface of the composite due to loss of low molecular weight volatiles. The amount and the size of the voids formed during aging increased with aging temperature and time.  相似文献   

17.
Multiwall carbon nanotubes (MWCNTs) were amino‐functionalized by 1,2‐ethylenediamine (EDA)' triethylenetetramine (TETA), and dodecylamine (DDA), and investigated by fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and thermogravimetric analysis (TGA). The dispersion of the DDA functionalized MWCNT in DMF is better than that of the MWCNT functionalized by the EDA and the TETA. Carbon nanotubes reinforced epoxy resin composites were prepared, and the effect of the amino‐functionalization on the properties of the composites was investigated by differential scanning calorimetry (DSC), dynamical mechanical analysis (DMA), and TGA. The composites reinforced by the MWCNTs demonstrate improvement in various mechanical properties. The increase of Tg of the composites with the addition of amino‐functionalized MWCNT compared to the Tg of the composites with the addition of unfunctionalized MWCNT was due to the chemical combination and the physical entanglements between amino group from modified MWNTs and epoxy group from the epoxy resin. The interfacial bonding between the epoxy and the amino group of the EDA and the TETA‐modified MWCNT is more important than the well dispersion of DDA‐modified MWCNT in the composites for the improvement of the mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
The UV irradiation aging behaviors of PVC composites with several inorganic fillers were studied through Fourier transform spectroscopy (FTIR), ultraviolet spectroscopy (UV‐Vis), differential scanning calorimeter (DSC), scanning electron microscopy (SEM), and mechanical property test. It was found that incorporation of a small amount of the inorganic fillers such as CaCO3, talc and SiO2 could hold up the UV aging behaviors of PVC. Those filler‐filled PVC composites sheets after 20 days UV irradiation maintain lower carbonyl index (CI) and good appearance of surfaces, as compared with the corresponding neat PVC sheets, ascribed to high reflection of those fillers to UV light. While montmorillonite (MMT) and pyrophyllite fillers could accelerate the UV aging behaviors of PVC, which could be concluded from both the sharp increase of the CI and lower Tg due to the chain scission reactions because of their high absorbance of these fillers to UV light in 290–400 nm. In these two PVC composites, UV irradiation caused the deterioration of their mechanical properties and the appearance of rough, cracked and chalked surfaces after 20 days UV irradiation. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
The glass‐transition temperatures (Tg) of some polymers reported in the literature have always been a source of great uncertainty. The values reported for poly(methacrylonitrile) (PMAN, 100 and 120°C) are well above the value determined in this study (67°C). It is clearly shown by FTIR and DSC work that formation of cyclic structures during the drying of PMAN, even at low temperatures, is the main reason for the high Tg values observed. The contributions of naphthydrine type cyclic structures and intermolecular crosslinks in the increase of the Tg are determined over an aging temperature interval of 90–300°C. The combined effects of intra‐ and intermolecular linking cause an increase in the Tg from 67 to 116°C. The hardness measurements also confirm the value determined by DSC. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1936–1943, 2001  相似文献   

20.
A novel fluorine‐containing acrylic resin, 4‐trifluoromethylphenyl glycerol dimethacrylate (TPGD), was synthesized and the structure was characterized by FTIR, 13C NMR, 1H NMR, and 19F NMR spectroscopy. The conversion of cure reaction, thermal stability, glass transition temperature (Tg), and electrical properties of the TPGD acrylic resin cured with UV radiation were investigated. The thermal stability and Tg of the UV‐cured specimens show a maximum value at 1 wt% photoinitiator, due to the formation of advanced network structures. The cured specimens had a relatively low dielectric constant, attributed to the decreased deformation polarizability of segment motion in the fluorine‐containing resin. Copyright © 2004 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号