首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous preparation of curcumin nanoparticles via solvent–nonsolvent (S-NS) precipitation by using spinning disc reactor was investigated. The process intensification by spinning disc reactor (SDR) along with the comparative study of conventional mechanical agitated contactor was carried out. Solvent used for curcumin precipitation in this study was ethanol whereas non-solvent deionised water. Influences of various operating parameters for spinning disc process; such as flow rate of S-NS, S-NS ratio, concentration of curcumin, disc characteristics, concentration of protecting agent and rotating disc speed were examined on the nanoparticles size. The average optimum curcumin particles size was obtained in the range 180–220 nm in consideration with particles size distribution at a flow rate of 200 mL min−1; curcumin concentration of 0.5 g L−1 in ethanol; polyvinylpyrilodine (PVP) concentration of 1 g L−1 in deionised water; S:NS ratio 1:4 and operating disc speed of 1500 rpm. Particles were characterized by using XRD, FT-IR, DSC and SEM which showed decrease in the crystallinity after the nanoprecipitation of curcumin. The dissolution rates of the fabricated curcumin nanoparticle were found drastically higher than original curcumin.  相似文献   

2.
This paper reports on UV-initiated free-radical copolymerisation of vinyl acetate with n-butyl acrylate (VAc-BA) under conditions of thin film flow in a spinning disc reactor (SDR). Almost 40% overall monomer conversion can be achieved in under 5 s under optimised operating conditions in the SDR, with controlled molecular weight properties of the copolymer, highlighting the good levels of mixing in the film. Residence time on the SDR is a limiting factor in the extent of conversion achievable in a single pass. Comparison with a static film demonstrates the superiority of the SDR in maintaining a high overall rate of polymerisation. Composition of the copolymer formed in the SDR indicates that, due to its plug flow behaviour, the SDR cannot address the inherent problem of compositional drift.We have shown that efficiency of light absorption is dictated by conditions favouring longest UV exposure times, rather than thinner films on the disc. Initiator decomposition efficiency, an important consideration in the overall rate of the co-polymerisation, is enhanced by lower fluid flowrates. This study highlights the promising technology offered by the SDR in combination with UV irradiation for the exploitation of photo-copolymerisation as a viable method for bulk copolymer synthesis.  相似文献   

3.
Acoustic cavitation results in substantial enhancement in the rates of various chemical reactions but the existing knowledge about the application of reactors based on acoustic cavitation is limited to very small capacities (of the order of few millilitres). In the present work, an overview of the application of acoustic cavitation for the intensification of chemical reactions has been presented briefly, discussing the causes for the observed enhancement and highlighting some of the typical examples. A novel reactor has been developed operating at a capacity of 7 dm3 and tested with two reactions, ie liberation of iodine from aqueous potassium iodide and degradation of formic acid. The energy efficiency of the reactor has been calculated and compared with the conventional sonochemical reactors. The effect of frequency of irradiation on the percentage conversion of the reactants has been studied. Due to quite low conversions in the case of formic acid degradation, further intensification was attempted using aeration, addition of hydrogen peroxide, and the presence of solid particles (TiO2). Compared with conventional reactors the novel reactor gives excellent results and it can be said that the future of using acoustic cavitation for process intensification lies in the development of large‐scale multiple frequency multiple transducer reactors. Copyright © 2003 Society of Chemical Industry  相似文献   

4.
The liquid-solid circulating moving bed reactor is a novel one, which consists of two or more reaction chambers and a particle transport system. Particles move down to the lower reaction chamber from the upper reaction chamber through an upper conduit and to the particle transport system through a lower conduit, and then are conveyed into the upper reaction chamber through a riser. The circulating rate of particles and the flow of liquid in the two conduits are key factors to the continuous steady operation of the reactor; they can be controlled by varying operating conditions: the outlet liquid flow rate in the regeneration chamber, the outlet liquid flow rate in the reaction chamber, the inlet liquid flow rate of the reactants, and the flow rate of driving flow. A flow model has been proposed to quantify the operation characteristics of the reactor. The results predicted by the model show satisfactory agreement with the experimental data.  相似文献   

5.
The liquid-solid circulating moving bed reactor is a novel one, which consists of two or more reaction chambers and a particle transport system. Particles move down to the lower reaction chamber from the upper reaction chamber through an upper conduit and to the particle transport system through a lower conduit, and then are conveyed into the upper reaction chamber through a riser. The circulating rate of particles and the flow of liquid in the two conduits are key factors to the continuous steady operation of the reactor; they can be controlled by varying operating conditions: the outlet liquid flow rate in the regeneration chamber, the outlet liquid flow rate in the reaction chamber, the inlet liquid flow rate of the reactants, and the flow rate of driving flow. A flow model has been proposed to quantify the operation characteristics of the reactor. The results predicted by the model show satisfactory agreement with the experimental data.  相似文献   

6.
催化裂解反应器是石油深度加工的重要反应器,采用实验方法对新型快速床催化裂解反应器内气固两相流动特性进行了研究,测量了床层内颗粒浓度分布,考察了气体流量对床层轴向和径向上颗粒浓度分布的影响。实验结果表明,床层轴向上颗粒浓度呈现下部稠密上部稀疏的分布规律;当气体流量较低时轴向颗粒浓度呈S形分布,高气量下呈现指数函数形分布,即反应器上部区域的颗粒浓度分布影响较小;床层径向颗粒浓度分布呈现中心稀、边壁浓的特征,且增大空气流量,径向分布趋于均匀。在一定操作条件下,与传统提升管相比,新型快速床颗粒浓度显著提高。  相似文献   

7.
A numerical simulation study of production of fine ceramic powders in an innovative vapor-phase aerosol reactor is described. Arrangement is typical of reverse-flow cyclone equipment; no similar device is present in current scientific literature and industrial technology. The cyclone reactor has a potential technological application as it realizes process intensification by two simultaneous operating advantages: (i) curly flow reduces recirculation of as-synthesized particles towards flame region, and (ii) cyclone arrangement segregates large particles. As a result, ceramic powders with narrower particle size distribution can be produced with regard to traditional equipment. The study is based on the re-modeling of an existing industrial reactor for production of fine TiO2 according to a cyclone configuration; particle size distributions from simulation and plant are compared.  相似文献   

8.
A two-dimensional model has been developed for silicon nanoparticle synthesis by silane thermal decomposition driven by laser heating in a tubular reactor. This fully coupled model includes fluid dynamics, laser heating, gas phase and surface phase chemical reactions, and aerosol dynamics which includes particle transport and evolution by convection, diffusion, thermophoresis, nucleation, surface growth, and coagulation processes. A moment method, based upon a lognormal particle size distribution, and a sectional method are used to model the aerosol dynamics. The simulation results obtained by the two methods are compared. The sectional method is capable of capturing the bimodal behavior that occurs locally during the process, while the moment method is computationally more efficient. The effect of operating parameters, such as precursor concentration, gas phase composition, inlet gas velocity and laser power input, on the characteristics of the particles produced are investigated. Higher temperature generates more large particles with higher precursor conversion. Shorter residence time, from high inlet velocity, produces more small particles at the cost of lower precursor conversion. Increasing H2 concentration suppresses particle formation by reducing the rates of gas phase and surface reactions, leading to fewer and smaller particles. In addition, the relative importance of the interconnected mechanisms involved in the particle formation is considered. The results make clear that spatial variations in reaction conditions are the primary source of size polydispersity and generation of non lognormal overall size distributions in a laser-driven process like that considered here.  相似文献   

9.
It has been observed that when a prepolymer mix of styrene, poly(styrene), toluene, and benzoyl peroxide is transferred from a conventional stirred tank reactor (STR) to a spinning disc reactor (SDR), the rate of polymerization is substantially increased. Furthermore, the molecular weight and the molecular weight distribution of the polymer formed at conversions up to about 80% in the SDR is virtually unchanged from that of the polymer formed at 60% conversion in the STR. These results seem to indicate that the increase in polymerization rate is not the result of the well‐known Trommsdorff–Norrish effect, which would be expected to lead to an increase in polydispersity. We believe that shear and centrifugal forces experienced by the film provide intense mixing and extension flow effects, which are responsible for the above‐described observations. In this report an explanation has been put forward to describe the observed effects. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2283–2286, 2002  相似文献   

10.
The intensification of gas-solids contact in the fuel reactor of a chemical looping combustion system is enhanced with the installation of ring-type internals. This can be a key issue for achieving the necessary fuel conversion rates. Wedged rings, previously designed and tested, were found to increase the particle concentration in the counter current section of the fuel reactor and hence, to achieve a more homogeneous particles concentration along this zone. The present work investigates the effect of the mentioned internals on the residence time distribution of particles in the fuel reactor of a dual circulating fluidized bed system for chemical looping. The study was carried out in a cold flow model especially designed for the fluid-dynamic analysis of the system equipped with a recently developed residence time measurement device based on the detection of ferromagnetic tracer particles through inductance measurement. Ring internals proved the positive effect on the particles residence time, the residence time distribution is more symmetric and shows lower dispersion, the flow pattern is more plug-flow-like, these effects are intensified with the reduction of the aperture ratio of the rings. On the other hand, the upward particle transport in the counter-current zone of the fuel reactor also increases with the installation of the rings, increasing the bypass flow of solids through the fuel reactor's return loop (internal circulation). For high internal circulation rates the solids residence time distribution of the fuel reactor is dominated by the bypass effect. The findings may be used for focused design improvement of the investigated fluidized bed system.  相似文献   

11.
张玉黎  徐庶亮  叶茂 《化工进展》2020,39(12):5057-5065
利用甲醇甲苯烷基化工艺生产对二甲苯具有良好的应用前景。甲醇甲苯烷基化催化剂较易积炭失活,且反应存在明显热效应。流化床因传热传质性能好、易实现催化剂连续再生,适合用作甲醇甲苯烷基化反应器。本文采用离散颗粒模型,对甲醇甲苯烷基化流化床反应器进行了数值模拟研究,重点考察了进料比、反应压力、分段进料对反应特性的影响。结果表明,当甲苯进料量给定时:降低反应物中甲苯甲醇比可有效提升对二甲苯产率和选择性,但产物中对二甲苯和烯烃摩尔比值较低;提高反应压力可显著提升甲醇和甲苯转化率,但会降低对二甲苯选择性;在低苯醇比基础上采用甲醇分段进料方式不仅可有效提高甲苯利用率,还可灵活调节产物中对二甲苯和烯烃比率;流化床反应器气体返混不利于获得高对二甲苯选择性,且操作条件变化会造成流化床反应器内气固流动改变,导致气固接触效率或反应物局部分压发生改变,这亦将对反应转化特性造成显著影响。这些结果对于流化床反应器优化和放大具有一定的指导意义。  相似文献   

12.
In this paper we report synthesis and characterization of composite polymeric particles bearing magnetite inclusions and reactive β-diketone groups on the surface. Composites were prepared by two-step method in which first step requires preparation of the functionalized polystyrene core and during second step magnetite was deposited onto core particle surface. This procedure gives a possibility to obtain composite particles with core-shell morphology and both the core size and magnetite shell thickness can be varied. Highly monodisperse PS/AAEM microspheres were synthesized by surfactant-free emulsion polymerization. Change of monomer fleet-ratio gives a possibility to change effectively the final particle size of dispersions without strong changes in particle size distribution. PS/AAEM particles were characterized by light scattering techniques (DLS, SLS) and electron microscopy (SEM) with respect to their particle size and morphology of the surface layer. Magnetite was deposited in form of nano-crystals onto PS-AAEM particle surface by heterocoagulation process. It has been established that more uniform magnetite coating was obtained at lower base amounts used for synthesis of magnetite. Amount of the magnetite on the polymeric particle surface can be effectively controlled by changing the initial FeCl2 and FeCl3 concentrations and/or variation of the PS/AAEM core dimensions. It has been confirmed by separation centrifugation technique, that stepwise increase of the magnetite content on the particle surface decrease gradually the stability of colloidal system. Magnetization curves for composite particles indicate that deposited magnetite content is high enough to achieve considerable magnetic response to external magnetic field.  相似文献   

13.
连续进出料鼓泡流化床颗粒停留时间分布   总被引:2,自引:0,他引:2  
针对双流化床气化或双床热解气化工艺中鼓泡床反应器的设计,采用脉冲法研究了Geldart B类固体颗粒在连续颗粒进料和出料的矩形流化床内的停留时间分布(RTD),考察了气速、床料高度、粒径、物料流率等操作参数对RTD的影响. 结果表明,物料流率、床料高度、粒径是影响颗粒RTD的主要因素,而气速则是次要因素. 随物料流率和粒径增加,鼓泡床内颗粒流动向平推流靠近;随床料高度增加,物料在床内的混合更加充分,颗粒流动向全混流靠近. 根据实验结果,推荐采用比理想平推流时间低9%~18%计算平均颗粒停留时间.  相似文献   

14.
A novel synthesis method based on a flow injection technique was developed and the synthesis of magnetite nanoparticles was performed to demonstrate the concept. The technique consisted of continuous or segmented mixing of reagents under laminar flow regime in a capillary reactor. Different schemes of the flow injection synthesis were evaluated and the continuous mode was found to be more advantageous for the synthesis of the iron oxide particles. The material was characterised by X-ray diffraction, thermal analysis, electron microscopy, and magnetic susceptometry. The obtained magnetite nanoparticles had a narrow size distribution in the range 2-7 nm. The influence of chemical parameters and conditions on properties of the material was investigated.  相似文献   

15.
Flame aerosol synthesis is one of the commonly employed techniques for producing ultra fine particles of commodity chemicals such as titanium dioxide, silicon dioxide and carbon black. Large volumes of these materials are produced in industrial flame reactors. Particle size distribution of product powder is the most important variable and it depends strongly on flame dynamics inside the reactor, which in turn is a function of input process variables such as reactant flow rate and concentration, flow rates of air, fuel and the carrier gas and the burner geometry. A coupled flame dynamics–monodisperse population balance model for nanoparticle synthesis in an aerosol flame reactor is presented here. The flame dynamics was simulated using the commercial computational fluid dynamics software CFX and the particle population dynamics was represented using a monodisperse population balance model for continuous processes that predicts the evolution of particle number concentration, particle volume and surface area. The model was tested with published experimental data for synthesis of silica nanoparticles using different burner configurations and with different reactor operating conditions. The model predictions for radial flame temperature profiles and for the effects of process variables like precursor concentration and oxygen flow rate on particle specific surface area and mean diameter are in close agreement with published experimental data.  相似文献   

16.
The characteristics of a new heterogeneous reactor of the “two impinging streams” type, suitable for gas-solid heat and mass-transfer operations, were investigated. The operating limits of the reactor, with respect to gas and solid particles mass flow rate and pressure drop, were determined; scale-up criteria with respect to the hydrodynamics of the reactor were also established. It has been found that, under certain conditions, the introduction of solid particles into the gas stream lowers the pressure drop on the reactor. In addition, the maximal pumping energy per kg of solids transported through the reactor by the air is much lower than in a fluidized-bed-type reactor. A stochastic model based on Markov processes was developed which closely describes the behavior of the solid particles in the reactor. A technique based on this model was employed for determining the residence time distribution of the particles in the reactor.  相似文献   

17.
In the particle precipitation-aided chemical vapor deposition process, an aerosol is formed in the gas phase at elevated temperatures. The particles are deposited on a cooled substrate. Coherent layers with a controlled porosity can be obtained by a simultaneous heterogeneous reaction, which interconnects the deposited particles. The synthesis of submicrometer powder of the perovskite oxide yttrium chromite (YCrO3) by gas to particle conversion, which is the first step of the PP-CVD process, has been investigated, and preliminary results are shown. The powders have been synthesized using yttrium trichloride vapor (YCl3), chromium trichloride vapor (CrCl3), and steam and oxygen as reactants. The influence of the input molar ratio of the elements on the composition and characteristics of the powders has been investigated. Phase composition has been determined by X-ray diffraction (XRD). The powders have been characterized by transmission electron microscopy (TEM) and sedimentation field flow fractionation (SF3). At a reaction temperature of 1283 K the powders consist of chromium sesquioxide (Cr2O3), or a mixture of Cr2O3 and YCrO3. At stoichiometric input amounts of metal chlorides and steam the formation of YCrO3 seems to be favored. Two typical particle size distributions have been observed. The primary particle size ranges from 5 to 30 nm for small particles, and from 40 to 250 nm for large particles, depending on the process conditions. The particles tend to be agglomerated. The weight of the agglomerates is independent of the primary particle diameter.  相似文献   

18.
The spouted‐bed reactor represents an interesting alternative to pyrolysis as compared with conventional fluid beds due to its better performance in handling coarse and irregular materials, requiring lower fluidizing flow rates and providing intense thermal contact. The fluid dynamics of a mixture of sand and sugarcane bagasse in a spouted bed was investigated. Since this process involves a mixture of solids of different sizes, shapes, and densities, particle segregation was also analyzed. The results provided significant insights about the segregation phenomenon which may cause severe operating problems during pyrolysis. Various mixture compositions were identified in which the particles exhibited good circulation in the bed.  相似文献   

19.
A mathematical model is developed for the emulsion copolymerization of styrene and butadiene carried out in a continuous train of stirred tank reactors. The model predicts copolymer composition, conversion, molecular weight averages, and long chain branching frequencies, as well as the latex particle size distribution for all reactors in the train. It is capable of simulating closely the behaviour of industrial SBR processes.

Several simulation studies are performed. Topics investigated include: process operating modifications to improve productivity; the effect of chain transfer agent flow rate and number of reactors on the molecular weight development; the effect of process modifications on the development of the particle size distribution down the reactor train; and the effect of reactor design on particle generation rates.  相似文献   

20.
In this work, by establishing a three-dimensional physical model of a 1000-ton industrial multi-jet combustion reactor, a hexahedral structured grid was used to discretize the model. Combined with realizable k–ε model, eddy-dissipation-concept, discrete-ordinate radiation model, hydrogen 19-step detailed reaction mechanism, air age user-defined-function, velocity field, temperature field, concentration field and gas arrival time in the reactor were numerically simulated. The Euler–Lagrange metho...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号