首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Adsorption characteristics of four different dyes Safranin O (cationic), Neutral Red (neutral), Congo Red (anionic) and Reactive Red 2 (anionic) on Si-MCM-41 material having very high surface area are reported. The surface morphology of Si-MCM-41 material before and after adsorbing dye molecules are characterised by FTIR, HRXRD, nitrogen adsorption–desorption isotherms, FESEM, and HRTEM. The adsorption capacities of Si-MCM-41 for the dyes followed a decreasing order of NR > SF > CR > RR2. The adsorption kinetics, isotherm and thermodynamic parameters are investigated in detail for these dyes using calcined Si-MCM-41. The kinetics and isotherm data showed that both SF and NR adsorb more rapidly than CR and RR2, in accordance with pseudo-second-order kinetics model as well as intraparticle diffusion kinetics model and Langmuir adsorption isotherm model respectively. The thermodynamic data suggest that the dye uptake process is spontaneous. The high adsorption capacities of dyes on Si-MCM-41 (qm = 275.5 mg g?1 for SF, qm = 288.2 mg g?1 for NR) is explained on the basis of electrostatic interactions as well as H-bonding interactions between adsorbent and adsorbate molecules. Good regeneration capacity is another important aspect of the material that makes it potent for the uptake of dyes from aqueous solution.  相似文献   

2.
BACKGROUND: The removal of cationic dyes from wastewater is of great importance. Three zeolites synthesized from coal fly ashes (ZFAs) were investigated as adsorbents to remove methylene blue (MB), a cationic dye, from aqueous solutions. Experiments were conducted using the batch adsorption technique under different conditions of initial dye concentration, adsorbent dose, solution pH, and salt concentration. RESULTS: The adsorption isotherm data of MB on ZFAs were fitted well to the Langmuir model. The maximum adsorption capacities of MB by the three ZFAs, calculated using the Langmuir equation, ranged from 23.70 to 50.51 mg g?1. The adsorption of MB by ZFA was essentially due to electrostatic forces. The measurement of zeta potential indicated that ZFA had a lower surface charge at alkaline pH, resulting in enhanced removal of MB with increasing pH. MB was highly competitive compared with Na+, leading to only a < 6% reduction in adsorption in the presence of NaCl up to 1.0 mol L?1. Regeneration of used ZFA was achieved by thermal treatment. In this study, 90–105% adsorption capacity of fresh ZFA was recovered by heating at 450 °C for 2 h. CONCLUSION: The experimental results suggest that ZFA could be employed as an adsorbent in the removal of cationic dyes from wastewater, and the adsorptive ability of used ZFA can be recovered by thermal treatment. Copyright © 2010 Society of Chemical Industry  相似文献   

3.
《分离科学与技术》2012,47(12):1802-1812
In the current study, sorption of methylene blue dye (MB) from aqueous solutions, using sawdust modified with sodium dodecyl sulfate (SDS/SD) has been investigated. Sorption experiments were performed using batch and fixed-bed column systems. The effects of important parameters, such as pH, initial dye concentration, flow rate, and bed depth on the sorption of MB dye have been studied. Thomas and the bed-depth service time model (BDST) were applied for analysis of sorption data and estimating of sorption capacity. In order to drive adsorption isotherms, sorption experiments were conducted in batch mode and the treatment of the obtained data were carried out using the Langmuir and Freundlich equations. Based on the breakthrough analysis obtained from continuous sorption experiments, the highest column capacity of 129.68 mg g?1 was obtained for the SDS/SD adsorbent. The results of this study indicated that surfactant-modified sawdust is much more effective for basic MB dye removal compared to untreated sawdust (SD) and the exhausted SDS/SD column can be easily regenerated using dilute HCl solution with high performance (>95%). The results of this study also indicated the successful applicability of the introduced adsorbent as a very efficient and cost effective adsorbent for the removal of cationic dye molecules from aqueous wastes.  相似文献   

4.
An adsorbent was prepared from acetic acid lignin (AAL) to investigate the adsorption mechanism of methylene blue (MB) from water. AAL was first deacetylated in NaOH aqueous solution and then fractionated by methanol to prepare adsorbents with various acidic hydroxy groups. The adsorption capacities of MB increased with the increase in initial pH and with the decrease in adsorbent dosage. The results of adsorption kinetics indicated the dye uptake process is a chemisorption. The adsorption capacity of lignin for MB adsorption increased from 18.2 to 63.3 mg g?1 as AAL was deacetylated and fractionated.  相似文献   

5.
《分离科学与技术》2012,47(3):444-455
ABSTRACT

The study aims to use waste plastic PET bottles to recover terephthalic acid for preparing copper-1,4-benzenedicarboxylate, which was then utilized as an adsorbent for removal of methylene blue (MB) from aqueous solutions after carefully characterizing by XRD, FTIR, TGA, SEM, and EDX. The optimum conditions were established as pH = 6, 25°C, adsorbent dose of 1 g L?1, contact time of 20 min, and agitation speed of 150 rpm. The adsorption process was spontaneous, exothermic, fitting well to Langmuir isotherm model with the maximum adsorption capacity of 41.01 mg g?1 and more suitable to be described by the pseudo first-order kinetic model. It was indicated that the physical adsorption plays a leading role in the adsorption process. The recycling study was also conducted to confirm the long-term use of the synthesized adsorbent.  相似文献   

6.
A novel superabsorbent composite based on kappa-Carrageenan (κC) was prepared by graft copolymerization of acrylamide (AAm) onto κC in the presence of bentonite powder using methylenebisacrylamide (MBA) as a crosslinking agent, ammonium persulfate (APS) as an initiator, and sodium carbonate as a pore-forming agent. The swelling behavior in distilled water and in solutions with different pH values was investigated. The results indicated that with increasing carrageenan/bentonite weight ratio, the swelling capacity is increased but the gel content is decreased. The swelling rate of the hydrogels was improved by introducing sodium carbonate as pore-forming agent. The prepared superadsorbent composites were used as adsorbent for a cationic dye, methylene blue. Isotherm of adsorption and the effect of pH, adsorption dosage, contact time and initial dye concentration on dye adsorption were also studied. The results showed that maximum adsorption capacity of methylene blue on the prepared adsorbents is 156.25 mg g?1 and adsorption is well-described by Langmuir isotherm model.  相似文献   

7.
《分离科学与技术》2012,47(12):1966-1976
The present study explores the ability of a new adsorbent—conch shell powder (CSP) in removing Malachite Green from aqueous solutions. The effect of various process parameters, namely initial solution pH, temperature, initial dye concentration, adsorbent dose, and contact time was investigated. Adsorption equilibrium data were well described by the Langmuir isotherm with maximum adsorption capacity of 92.25 mg g?1 at 303 K. The kinetic data conformed to the pseudo-second-order kinetic model. A thermodynamic study showed the spontaneous nature and feasibility of the adsorption process. The results provide strong evidence to support the hypothesis of adsorption mechanism.  相似文献   

8.
The present study explains the preparation and application of sulfuric acid–treated orange peel (STOP) as a new low-cost adsorbent in the removal of methylene blue (MB) dye from its aqueous solution. The effects of temperature on the operating parameters such as solution pH, adsorbent dose, initial MB dye concentration, and contact time were investigated for the removal of MB dye using STOP. The maximum adsorption of MB dye onto STOP took place in the following experimental conditions: pH of 8.0, adsorbent dose of 0.4 g, contact time of 45 min, and temperature of 30°C. The adsorption equilibrium data were tested by applying both the Langmuir and Freundlich isotherm models. It is observed that the Freundlich isotherm model fitted better than the Langmuir isotherm model, indicating multilayer adsorption, at all studied temperatures. The adsorption kinetic results showed that the pseudo-second-order model was more suitable to explain the adsorption of MB dye onto STOP. The adsorption mechanism results showed that the adsorption process was controlled by both the internal and external diffusion of MB dye molecules. The values of free energy change (ΔG o) and enthalpy change (ΔH o) indicated the spontaneous, feasible, and exothermic nature of the adsorption process. The maximum monolayer adsorption capacity of STOP was also compared with other low-cost adsorbents, and it was found that STOP was a better adsorbent for MB dye removal.  相似文献   

9.
Grafting of binary vinyl monomer mixtures such as 2-methylpropenoic acid (MPA) and acrylonitrile (AN) onto poly (ethylene terephthalate) fibers (PET) was achieved in an aqueous medium with using benzoyl peroxide like free radical initiator. A new reactively fibrous adsorbent was used for removal of dye such as methylene blue (MB) from aqueous media through batch sorption method. Fibers adsorbent was swelled in solution to support the graft and the subsequent polymerization of MPA/AN onto polyester fibers. Optimum conditions for grafting were discovered and reactive fiber were characterized. Variations of graft yield with time, temperature, initiator concentration and monomer mixture ratio were investigated. The optimum initiator concentration was found to be 8 × 10?3 mol/L. The percentage of grafting rose steadily with the vinyl monomer mixture monomer concentration (50 %). The optimum temperature and polymerization time were found to be 80 °C and 120 min, respectively. The use of AN and MPA monomers together in grafting produce a significant increased in the graft yield. Experimental studies showed that the percentage removal of MB was a great higher on the MPA/AN grafted PET (MPA/AN-g-PET) fibers than on the original PET fibers. The adsorbed quantity of MB improved with pH and basic pH was appropriate for the elimination of MB. MPA/AN-g-PET fibers removed 98 % of cationic dye when initial concentration diverse from 10 to 80 mg L?1 at pH 9.0. Almost all of the adsorbed cationic dye was eluted by ethanoic acid in methanol. Ten removal–desorption cycles indicated that the reactive fibers were favorable for repetitive use without notable change in removal capacity. Consequently, the MPA/AN-g-PET fibers have demonstrated potential as an effective adsorbent for the extremely effective removal of cationic dyes from aqueous media.  相似文献   

10.
In this study, activated carbon based on the waste macadamia nut shells (MAC) was investigated for potential use as an adsorbent for phenol removal. The pseudo second-order kinetic model best described the adsorption process. The extent of the phenol adsorption was affected by the pH solution and the adsorbent dosage. Equilibrium data fitted well to the Langmuir model with a maximum adsorption capacity of 341 mg g?1. The calculated thermodynamic parameters suggested that the phenol adsorption onto MAC was physisorptive, spontaneous and exothermic in nature. Phenol desorption from loaded adsorbent was achieved by using 0.1 mol L?1 NaOH, ethanol (100 %) and deionized water.  相似文献   

11.
《分离科学与技术》2012,47(18):2804-2816
Pyrolytic char treated with muffle furnace (TPC), a novel adsorbent, were investigated to enhance its adsorption capacity of malachite green (MG) dye. In addition, the dye adsorption behavior of the TPC in aqueous solution was investigated. The treatment temperature, treatment time, and the particle size of PC had a positive effect on the dye adsorption capacity of TPC. Equilibrium data was fitted well with Langmuir and Redlich-Peterson models with maximum adsorption capacity of 91.24, 111.27, and 119.01 mg g?1 at 293, 303, and 313 K, respectively. The kinetic of adsorption was found to confirm to the Elovich equation with good correlation and the overall rate of MG uptake was found to be controlled by film diffusion, pore diffusion and particle diffusion. The Boyd plot confirmed that the external mass transfer was the rate-limiting step in the adsorption process. Different thermodynamic parameters have also been evaluated and it was found that the adsorption was spontaneous, feasible, and endothermic in nature. Adsorbents could be regenerated using 0.1 mol L?1 NaOH solution at least three cycles, with up to 90% recovery. The TPC used in this work proved to be an effective material for the treatment of MG bearing aqueous solutions.  相似文献   

12.
The ZnO/ZnMn2O4 nanocomposite (ZnMn) was used as adsorbent for the removal of cationic dye Basic Yellow 28 (BY28) from aqueous solutions. The adsorbent was characterized by X-ray diffraction, scanning electron microscope, TEM, Fourier transform infrared ray, BET, particle size distribution and zeta potential measurements. The adsorption parameters, such as temperature, pH and initial dye concentration, were studied. Kinetic adsorption data were analyzed using the pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. The Langmuir and Freundlich isotherm models were applied to fit the equilibrium data. The maximum adsorption capacity of BY28 was 48.8 mg g?1. Various thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were calculated.  相似文献   

13.
《分离科学与技术》2012,47(10):1602-1614
Toxic methylene blue dye is removed from water by accumulating it on the surface of clay minerals. Clay adsorbents are obtained from kaolinite, montmorillonite, and their acid activated forms. The adsorption experiments are carried out in a batch process in environments of different pH, initial dye concentration, amount of clay, interaction time, and temperature. Adsorption of dye is best described by second order kinetics. In the temperature range of 303 to 333 K, the Langmuir monolayer capacity for three kaolinite species increased from 45.5 to 56.5 mg g?1, 45.9 to 57.8 mg g?1, 46.3 to 58.8 mg g?1, and for three montmorillonites species from 163.9 to 181.8 mg g?1, 166.7 to 188.8 mg g?1, and 172.4 to 192.3 mg g?1. The interaction is an endothermic process driven by entropy increase and spontaneous adsorptive accumulation is ensured by favorable Gibbs energy decrease. It is found that acid activation enhances the adsorption capacity of kaolinite and montmorillonite.  相似文献   

14.
《分离科学与技术》2012,47(14):2240-2251
ABSTRACT

The present investigation represents the synthesis of new p-sulphonatocalix[8]arene-based silica resin, p-SC8SR (5) and its application for the enhanced removal of methylene blue (MB) dye from contaminated water. The new p-SC8SR (5) resin was characterized by FT-IR, SEM, and EDX spectroscopy. The adsorption of MB on p-SC8SR (5) was investigated systematically by evaluating the effects of adsorbent dosage, initial pH, contact time, dye concentration, and ionic strength. Excellent adsorption (94%) of MB on p-SC8SR (5) was achieved at pH 9.5, contact time 10 min by using 0.2 mol L?1 ionic strength and 2 × 10?5 M initial MB dye concentration. Kinetic behavior of MB dye adsorption process on the newly synthesized p-SC8SR (5) adsorbent follows the pseudo-second-order rate model (R2 = 0.998 and 0.999 for 2 × 10?5 M and 1 × 10?4 M, respectively). Adsorption isotherms were fitted well by the Freundlich model with excellent value of coefficient of determination (R2) = 0.995 which demonstrated that the adsorption of MB follows multilayer mechanism. Wastewater samples contaminated with MB were used to assess efficiency of the p-SC8SR (5) adsorbent. Results indicated that newly synthesized p-SC8SR (5) was found to be efficient adsorbent. During the removal process, the role of different functional groups’ cyclic structure was scrutinized and found that the ionic property as well as π–π interaction of host molecules played imperative role in the extent of adsorption.  相似文献   

15.
《分离科学与技术》2012,47(14):2298-2304
The preparation of poly(methacrylic acid) modified chitosan microspheres (PMAA-GLA-CTS) and its application for the removal of cationic dye, methylene blue (MB), in aqueous solution in a batch system were described. The modified chitosan was characterized using FTIR and XPS analysis. The effects of the pH of the solution, contact time, and initial dye concentration were studied. The adsorption capacity of the microspheres for MB increased significantly after the modification as a large number of carboxyl groups were introduced. The equilibrium process was better described by the Langmuir rather than the Freundlich isotherm. According to the Langmuir equation, the maximum adsorption capacity was 1 g · g?1 for MB. Kinetic studies showed better correlation coefficients for a pseudo-second-order kinetic model, confirming that the sorption rate was controlled by a chemisorption process. Photocatalytic regeneration of spent PMAA-GLA-CTS using UV/TiO2 is effective. Further, the regenerated PMAA-GLA-CTS exhibits 90% efficiency for a subsequent adsorption cycle with MB aqueous solutions.  相似文献   

16.
The present study describes the synthesis of silica and magnetic nanoparticle-decorated graphene oxide (GO-MNPs-SiO2) and its application as an adsorbent for the removal of naproxen from wastewater. Nanocomposite was characterized utilizing FT-IR spectroscopy, FESEM microscopy, EDX and XPS spectroscopy. Under the optimum conditions, a high adsorption capacity (31 mg g?1) was obtained toward naproxen at pH 5. The adsorption process was evaluated using isotherms; the Freundlich isotherm suggested a multilayer adsorption pattern for naproxen. Free energy confirmed a physisorption mechanism between naproxen and adsorbent. Lastly, the field application was performed in wastewater which obtained high removal efficiency percentages (83–94%).  相似文献   

17.
Batch lignocellulose-g-poly(acrylic acid)/montmorillonite (LNC-g-PAA/MMT) hydrogel nanocomposites were applied as adsorbents. The nanocomposites were characterized by FTIR, XRD, SEM, and TEM. The results showed that montmorillonite (MMT) could react with the monomers and change the structure of polymeric network of the traditional superabsorbent materials, an exfoliated structure was formed in the nanocomposites. The effect of process parameters such as MMT content (wt%), contact time (t), initial concentration of dye solution (C 0), adsorption temperature (T), and pH value (pH) of the dye solution for the removal of methylene blue (MB) from aqueous solution were also studied. The results showed that the adsorption capacity for MB increased with increasing contact time, initial dye concentration, and pH value, but decreased with increasing MMT content and temperature. The adsorption kinetics were better described by the pseudo-second-order equation, and their adsorption isotherms were better fitted for the langmuir equation. By introducing 20 wt% MMT into LNC-g-PAA polymeric network, the obtaining hydrogel composite showed the high adsorption capacity 1994.38 mg/g and economic advantage for MB. The desorption studies revealed that the composite provided the potential for regeneration and reuse after MB dye adsorption, which implied that the composite could be regarded as a potential adsorbent for cationic dye MB removal in a wastewater treatment process.  相似文献   

18.
Struvite powder obtained from swine wastewater was used as adsorbent to remove an azo leather dye from aqueous solution. The material was characterized by X-ray diffraction, surface area, and atomic force microscopy. The sample presented a single phase having a mesoporous structure and surface area of 35.63 m2 g?1. Langmuir and Freundlich isotherm models were fitted to the adsorption data and both satisfactorily represented the process. The maximum adsorption capacity was 38.14 mg g?1. From the analysis of thermodynamic parameters such as free energy of adsorption (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) it was verified that the adsorption process is very fast, spontaneous, and exothermic in nature, with weak forces acting.  相似文献   

19.
《分离科学与技术》2012,47(3):501-513
Abstract

Activated carbons offer an efficient option for the removal of organic and inorganic contaminants from water. However, due to its high costs and difficulty in the regeneration, other low cost adsorbents have been used. In this work, the adsorption capacity of an adsorbent carbon with high iron oxides concentration was compared with that of a commercial activated carbon in the removal of a leather dye from an aqueous solution. The adsorbents were characterized using SEM/EDAX analysis and BET surface area. The capacity of adsorption of the adsorbents was evaluated through the static method at 25°C. The results showed that the color removal was due to the adsorption and precipitation of the dye on the surface of the solids. The adsorption equilibrium was described according to the linear model for the adsorbent carbon and the equilibrium constant was 0.02 L g?1. The equilibrium of adsorption on activated carbon exhibited a behavior typical of the Langmuir isotherm and the monolayer coverage was 24.33 mg g?1. A mathematical model was proposed to describe the dynamics of the color removal using a fixed bed considering that the color removal is due to the adsorption and the precipitation of the dye on the adsorbent.  相似文献   

20.
ABSTRACT

Our work focuses on the study of the adsorption of methylene blue (MB) on adsorbents based on zeolite HUSY and (γAl2O3-SiO2). To optimize the process of removing MB onto Ni/Co USY, different parameters were studied such as contact time, initial pH, initial dye concentration, zero charge’s point, and adsorbent dosage. The adsorption isotherm follows the Langmuir model. The maximum adsorption capacities of MB were 59.88 mg g?1 for Ni/Co USY and 43.86 mg g?1 for Ni/Co (γAl-Si) at 298°K. The thermodynamic parameters and activation energy’s values obtained suggested that the adsorption was a physical process, spontaneous, and endothermic in nature. MB adsorption on Ni/Co USY may occur via electrostatic interaction, hydrogen bonding, and Lewis acid–base interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号