首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Psychophysical experiments were conducted in the UK, Taiwan, France, Germany, Spain, Sweden, Argentina, and Iran to assess colour emotion for two‐colour combinations using semantic scales warm/cool, heavy/light, active/passive, and like/dislike. A total of 223 observers participated, each presented with 190 colour pairs as the stimuli, shown individually on a cathode ray tube display. The results show consistent responses across cultures only for warm/cool, heavy/light, and active/passive. The like/dislike scale, however, showed some differences between the observer groups, in particular between the Argentinian responses and those obtained from the other observers. Factor analysis reveals that the Argentinian observers preferred passive colour pairs to active ones more than the other observers. In addition to the cultural difference in like/dislike, the experimental results show some effects of gender, professional background (design vs. nondesign), and age. Female observers were found to prefer colour pairs with high‐lightness or low‐chroma values more than their male counterparts. Observers with a design background liked low‐chroma colour pairs or those containing colours of similar hue more than nondesign observers. Older observers liked colour pairs with high‐lightness or high‐chroma values more than young observers did. Based on the findings, a two‐level theory of colour emotion is proposed, in which warm/cool, heavy/light, and active/passive are identified as the reactive‐level responses and like/dislike the reflective‐level response. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

2.
Eleven colour‐emotion scales, warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, harmonious–disharmonious, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike, were investigated on 190 colour pairs with British and Chinese observers. Experimental results show that gender difference existed in masculine–feminine, whereas no significant cultural difference was found between British and Chinese observers. Three colour‐emotion factors were identified by the method of factor analysis and were labeled “colour activity,” “colour weight,” and “colour heat.” These factors were found similar to those extracted from the single colour emotions developed in Part I. This indicates a coherent framework of colour emotion factors for single colours and two‐colour combinations. An additivity relationship was found between single‐colour and colour‐combination emotions. This relationship predicts colour emotions for a colour pair by averaging the colour emotions of individual colours that generate the pair. However, it cannot be applied to colour preference prediction. By combining the additivity relationship with a single‐colour emotion model, such as those developed in Part I, a colour‐appearance‐based model was established for colour‐combination emotions. With this model one can predict colour emotions for a colour pair if colour‐appearance attributes of the component colours in that pair are known. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 292–298, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20024  相似文献   

3.
This article classifies colour emotions for single colours and develops colour‐science‐based colour emotion models. In a psychophysical experiment, 31 observers, including 14 British and 17 Chinese subjects assessed 20 colours on 10 colour‐emotion scales: warm–cool, heavy–light, modern–classical, clean–dirty, active–passive, hard–soft, tense–relaxed, fresh–stale, masculine–feminine, and like–dislike. Experimental results show no significant difference between male and female data, whereas different results were found between British and Chinese observers for the tense–relaxed and like–dislike scales. The factor analysis identified three colour‐emotion factors: colour activity, colour weight, and colour heat. The three factors agreed well with those found by Kobayashi and Sato et al. Four colour‐emotion models were developed, including warm–cool, heavy–light, active–passive, and hard–soft. These models were compared with those developed by Sato et al. and Xin and Cheng. The results show that for each colour emotion the models of the three studies agreed with each other, suggesting that the four colour emotions are culture‐independent across countries. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 232–240, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20010  相似文献   

4.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

5.
An additive approach to predict harmony for three‐colour combinations is proposed in this article. It is hypothesised that a three‐colour combination can be seen as a combination of three colour pairs, each generating a harmonious/disharmonious feeling that can be quantified by a two‐colour harmony model the authors previously derived; the average of these three harmony values can then determine the overall harmony. To establish whether this hypothesis was valid, two psychophysical experiments were conducted in the United Kingdom and the United States. Experiment 1 used 6545 three‐colour wheels as the stimuli, presented individually on a calibrated cathode ray tube display. Under the same viewing conditions, Experiment 2 used 111 interior images as the stimuli. In each experiment, 20 British and 31 American participated as the observers. An additional test was undertaken, with 64 observers taking part, to address the issue of large sample size as encountered in Experiment 1, using 90 colour wheels selected randomly from those used in Experiment 1. The experimental results show close agreement between the observers' response and the harmony value predicted by the proposed method, with a correlation coefficient of 0.71 for the 6545 colour wheels, 0.93 for the 111 interior images and 0.88 for the additional 90 colour wheels. The results support the additive approach as a simple but robust method for predicting harmony in any three‐colour combinations, which may also apply to combinations generated by any number of colours. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

6.
Skin‐tone has been an active research subject in photographic colour reproduction. There is a consistent conclusion that preferred skin colours are different from actual skin colours. However, preferred skin colours found from different studies are somewhat different. To have a solid understanding of skin colour preference of digital photographic images, psychophysical experiments were conducted to determine a preferred skin colour region and to study inter‐observer variation and tolerance of preferred skin colours. In the first experiment, a preferred skin colour region is searched on the entire skin colour region. A set of nine predetermined colour centers uniformly sampled within the skin colour ellipse in CIELAB a*b* diagram is used to morph skin colours of test images. Preferred skin colour centers are found through the experiment. In a second experiment, a twice denser sampling of nine skin colour centers around the preferred skin colour center determined in the first experiment are generated to repeat the experiment using a different set of test images and judged by a different panel of observers. The results from both experiments are compared and final preferred skin colour centers are obtained. Variations and hue and chroma tolerances of the observer skin colour preference are also analysed. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2013  相似文献   

7.
It has been reported that for certain colour samples, the chromatic adaptation transform CAT02 imbedded in the CIECAM02 colour appearance model predicts corresponding colours with negative tristimulus values (TSVs), which can cause problems in certain applications. To overcome this problem, a mathematical approach is proposed for modifying CAT02. This approach combines a non‐negativity constraint for the TSVs of corresponding colours with the minimization of the colour differences between those values for the corresponding colours obtained by visual observations and the TSVs of the corresponding colours predicted by the model, which is a constrained non‐linear optimization problem. By solving the non‐linear optimization problem, a new matrix is found. The performance of the CAT02 transform with various matrices including the original CAT02 matrix, and the new matrix are tested using visual datasets and the optimum colours. Test results show that the CAT02 with the new matrix predicted corresponding colours without negative TSVs for all optimum colours and the colour matching functions of the two CIE standard observers under the test illuminants considered. However, the accuracy with the new matrix for predicting the visual data is approximately 1 CIELAB colour difference unit worse compared with the original CAT02. This indicates that accuracy has to be sacrificed to achieve the non‐negativity constraint for the TSVs of the corresponding colours. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

8.
Data were obtained for the colour appearance of unrelated colours under photopic and mesopic conditions. The effects of changes in luminance level and stimulus size were investigated. The method used was magnitude scaling of brightness, colourfulness, and hue. Two stimulus sizes (10° and 0.5°) and four starting luminance levels (60, 5, 1, and 0.1, cd/m2) were used. The results at 0.1 cd/m2 had large variations, so data were obtained for two additional stimulus sizes (1° and 2°) at this luminance level. Ten observers judged 50 unrelated colours. A total of 17,820 estimations were made. The observations were carried out in a completely darkened room, after 20 min adaptation; each test colour was presented on its own. Brightness and colourfulness were found to decrease with decreases of both luminance level and stimulus size. The CAM97u model predicted brightness more accurately than CIECAM02 but gave worse performance in predicting colorfulness. For hue, CAM97u and CIECAM02 both gave satisfactory predictions. Using the brightness correlate from CAM97u, a new colour‐appearance model based on CIECAM02 was developed specifically for unrelated colours under photopic and mesopic conditions, with parameters to allow for the effects of luminance level and stimulus size. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2011;  相似文献   

9.
Psychophysical experiments of colour appearance, in terms of lightness, colourfulness, and hue, were conducted outdoors and indoors to investigate whether there was any difference in colour appearance between outdoor and indoor environments. A panel of 10 observers participated in the outdoor experiment, while 13 observers took part in the indoor experiment. The reference white had an average luminance of 12784 cd/m2 in the outdoor experiment and 129 cd/m2 in the indoor experiment. Test colours included 42 colour patches selected from the Practical Coordinate Color System to achieve a reasonable uniform distribution of samples in CIECAM02. Experimental results show that for both outdoor and indoor environments, there was good agreement between visual data and predicted values by CIECAM02 for the three colour appearance scales, with the coefficient of variation values all lower than 25 and the R2 values all higher than 0.73, indicating little difference in the three dimensions of colour appearance between indoor and outdoor viewing conditions. Experimental data also suggest that the observers were more sensitive to variation in lightness for grayish colours than for highly saturated colours, a phenomenon that seems to relate with the Helmholtz-Kohlrausch effect. This phenomenon was modeled for predicting perceived lightness (J′) using the present experimental data. The new J′ model was tested using three extra sets of visual data obtained both outdoors and indoors, showing good predictive performance of the new model, with an average coefficient of variation of 14, an average R2 of 0.88, and an average STRESS index of 14.18.  相似文献   

10.
11.
In this study three colour preference models for single colours were developed. The first model was developed on the basis of the colour emotions, clean–dirty, tense–relaxed, and heavy–light. In this model colour preference was found affected most by the emotional feeling “clean.” The second model was developed on the basis of the three colour‐emotion factors identified in Part I, colour activity, colour weight, and colour heat. By combining this model with the colour‐science‐based formulae of these three factors, which have been developed in Part I, one can predict colour preference of a test colour from its colour‐appearance attributes. The third colour preference model was directly developed from colour‐appearance attributes. In this model colour preference is determined by the colour difference between a test colour and the reference colour (L*, a*, b*) = (50, ?8, 30). The above approaches to modeling single‐colour preference were also adopted in modeling colour preference for colour combinations. The results show that it was difficult to predict colour‐combination preference by colour emotions only. This study also clarifies the relationship between colour preference and colour harmony. The results show that although colour preference is strongly correlated with colour harmony, there are still colours of which the two scales disagree with each other. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 381–389, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20047  相似文献   

12.
This work is concerned with the prediction of visual colour difference between pairs of palettes. In this study, the palettes contained five colours arranged in a horizontal row. A total of 95 pairs of palettes were rated for visual difference by 20 participants. The colour difference between the palettes was predicted using two algorithms, each based on one of six colour-difference formulae. The best performance (r2 = 0.86 and STRESS = 16.9) was obtained using the minimum colour-difference algorithm (MICDM) using the CIEDE2000 equation with a lightness weighing of 2. There was some evidence that the order (or arrangement) of the colours in the palettes was a factor affecting the visual colour differences although the MICDM algorithm does not take order into account. Application of this algorithm is intended for digital design workflows where colour palettes are generated automatically using machine learning and for comparing palettes obtained from psychophysical studies to explore, for example, the effect of culture, age, or gender on colour associations.  相似文献   

13.
This article suggests a potential scientific approach in finding colour effects on human emotions and seasonal associations. A visual assessment of the colour samples was carried out with the help of Turkish observers in Denizli, Turkey. From the study, it was found that Turkish four season colours of spring, summer, autumn and winter were bright green, vivid yellow, dull yellow and dark grayish brown respectively. Moreover, the colour data were arranged in terms of gender and age of the observers. In this analysis, it was observed that the colour preferences changed according to the gender and age of the observers. For instance, the top spring colour preference of young ladies were vivid bluish green, light blue and bright purple, on the other hand the top spring colour preference of adult ladies was light yellow green and the top spring colour preference of young and adult men was bright green. In the study, the observers were also asked about elicited emotional associations of the main colours on their mind and the data were collected in a table. © 2015 Wiley Periodicals, Inc. Col Res Appl, 41, 523–529, 2016  相似文献   

14.
Psychophysical experiments were conducted to assess unique hues on a CRT display for a large sample of colour‐normal observers (n = 185). These data were then used to evaluate the most commonly used colour appearance model, CIECAM02, by transforming the CIEXYZ tristimulus values of the unique hues to the CIECAM02 colour appearance attributes, lightness, chroma and hue angle. We report two findings: (1) the hue angles derived from our unique hue data are inconsistent with the commonly used Natural Color System hues that are incorporated in the CIECAM02 model. We argue that our predicted unique hue angles (derived from our large dataset) provide a more reliable standard for colour management applications when the precise specification of these salient colours is important. (2) We test hue uniformity for CIECAM02 in all four unique hues and show significant disagreements for all hues, except for unique red which seems to be invariant under lightness changes. Our dataset is useful to improve the CIECAM02 model as it provides reliable data for benchmarking. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2011  相似文献   

15.
A new set of quantitative models of colour emotion and colour harmony were developed in this study using psychophysical data collected from 12 regions in the world, including Argentina, China, France, Germany, Hungary, Iran, Japan, Spain, Sweden, Taiwan, Thailand, and the UK. These data have previously been published in journals or conferences (for details see Tables 1 and 2 ). For colour emotion, three new models were derived, showing satisfactory predictive performance in terms of an average correlation coefficient of 0.78 for “warm/cool”, 0.80 for “heavy/light” and 0.81 for “active/passive”. The new colour harmony model also had satisfactory predictive performance, with an average correlation coefficient of 0.72. Principal component analysis shows that the common colour harmony principles, including hue similarity, chroma similarity, lightness difference and high lightness principles, were partly agreed by observers of the same region. The findings suggest that it is feasible to develop universal models of colour emotion and colour harmony, and that the former was found to be relatively more culture‐independent than the latter.  相似文献   

16.
Simultaneous contrast effects on lightness and hue in surface colours were investigated. Test colours, surrounded by induction colours, were matched by colours surrounded by neutral gray. The matching colours were selected from a series of samples that varied in either lightness or hue respectively. The lightness experiments were carried out by a panel of 20 observers on 135 test/induction colour combinations. The hue experiments were conducted on 51 test/induction colour combinations by a panel of eight observers. The lightness of the test colour was found to decrease linearly with the lightness of the induction colour, regardless of the hue of the induction colour. The magnitude of the lightness contrast effect in fabric colours was found to be about one‐quarter of that found in CRT display colours in a previous study. The hue contrast effect found in this study followed the opponent‐colour theory. Two distinctly different regions could be identified when the hue difference was plotted against hue‐angle difference between the induction colour and the test colour. The slope of the line in the region where the hue of the induction colour is close to the test colour was much larger than the slope in the other region, indicating that the hue contrast effect was more obvious when the induction colour was close to the test colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 32, 55–64, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20285  相似文献   

17.
During the colour perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is known as colour emotion. In Part I of this study, a quantitative analysis of the cross‐regional differences and similarities of colour emotions as well as the influence of hue, lightness, and chroma on the colour emotions of the subjects from Hong Kong, Japan, and Thailand, was carried out. In Part II, colour emotions of the subjects in any two regions were compared directly using colour planners showing the effect of the lightness and the chroma of colours. The colour planners can help the designers to understand the taste and feelings of the target customers and facilitate them to select suitable colours for the products that are intended to be supplied in different regions. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 458–466, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20063  相似文献   

18.
In recent studies, contextual situations of applied colours are compared to colours presented as samples or chips. Findings of such studies point out different results in terms of similarities or differences between the evaluations of isolated/abstract colours and contextualized situations. Architectural and spatial contexts have their own characteristics regarding colouring criteria, so it is of great importance to examine the architectural/spatial colouring process from this point of view. This study explores this process by investigating the consistency of semantic ratings of four sequential stages of the architectural colour design process, namely, colour chips/samples, abstract compositions, perspective drawings and 3D models. The architectural context for the study was a simple interior space. Fifteen different colour schemes were applied on the four media representing the stages. Subjects rated the 15 sets against seven bipolar, five‐step semantic differential scales. The scales consisted of harmonious‐discord, pleasant‐unpleasant, comfortable‐uncomfortable, spacious‐confined, static‐dynamic, exciting‐calming and extroverted‐introverted. Findings indicated that there are significant associations between the evaluations of the abstract compositions, the perspective drawings and the 3D models; however, the evaluations of colour chips are significantly different than the others. The medium effect observed mostly between abstract and contextualized media. Additionally, factor analysis showed that pleasantness, harmony, spaciousness and comfort are connected in the evaluations of contextual situations, while pleasantness and harmony differ from spaciousness and comfort in the evaluations of colour chips and abstract compositions. The factor of activity (arousal) (dynamism, excitement, and extroversion) stays the same for all four media. It is also found that different colour characteristics are determinative over different media. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

19.
This study compares semantic ratings of colour samples (chips) with those of the same colours applied to a variety of objects. In total, 25 participants took part in the colour‐meaning experiment, and assessed 54 images using five semantic scales. In Experiment 1, simplified images (coloured silhouettes) were used whereas in Experiment 2 real images were used. In this article, the terms “chip meaning” and “context meaning” are used for convenience. Chip meaning refers to the associated meanings when only isolated colour chips were evaluated while context meaning refers to colour meanings evaluated when colours were applied to a variety of product categories. Analyses were performed on the data for the two experiments individually. The results of Experiment 1 show relatively few significant differences (28%) between chip meaning and context meaning. However, differences were found for a number of colours, objects, and semantic scales i.e., red and black; hand wash and medicine; and masculine‐feminine and elegant‐vulgar. The results of Experiment 2 show more significant differences (43%) between chip meaning and context meaning. In summary, the context sometimes affects the colour meaning; however, the degree to which colour meanings are invariant to context is perhaps slightly surprising. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 450–459, 2017  相似文献   

20.
Although web page and computer interface developers generally have little experience in generating effective colour schemes, colour selection appears rarely in user interface design literature, and there are few tools available to assist in appropriate choice of colours. This article describes an algorithmic technique for applying colour harmony rules to the selection of colour schemes for computer interfaces and web pages. Our software implementation of this approach—which we term the Colour Harmoniser—adapts and extends classical colour harmony rules for graphical user interfaces, combining algorithmic techniques and personal taste. A companion article presents the experimental evaluation of the system presented here. Our technique applies a set of rules for colour harmony to specific features of the interface or web page to create abstract colour schemes; the user then modifies the overall colour cast, saturation, and light–dark distribution, producing colourings that are both harmonious and usable. We demonstrate experimentally that the software is relatively simple to use and produces colourings that are well‐received by humans. In this article, we define a fitness function that numerically evaluates the colour harmony of a user interface and underpins a genetic algorithm for creating harmonious schemes. We show how abstract, hue‐independent, colour schemes may be mapped to real colour schemes, leaving the abstract colour harmony unchanged, but accommodating the developer's personal preferences for overall colouring, light–dark contrast, and saturation. This abstract/concrete separation automates the creation of harmonious schemes and allows unskilled developers to express their aesthetic preferences using simple direct manipulation controls. © 2011 Wiley Periodicals, Inc. Col Res Appl, 38, 203–217, 2013.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号