首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrospinning of Polyamide 6 (PA 6) in 2,2,2‐trifluoroethanol (TFE) was investigated for the fabrication of nanofibrous nonwoven membranes useful for separation systems. The effects of solution characteristics such as concentration and conductivity as well as the effects of processing conditions such as relative humidity and applied potential on the resultant nonwoven fibers were studied. By changing the relative humidity of the electrospinning chamber and the conductivity of the solvent, it is possible to modulate the fiber's size and consequently the porosity of the mats. The morphology of the electrospun PA 6 nanofibers was observed by scanning electron microscopy. The mechanical properties of the nanofibers were also studied. The results showed that PA 6 nanofibers having a diameter ranging from 100 to 600 nm, has been successfully prepared. The electrospun PA 6 nanofiber mats show good mechanical properties, such as a high‐tensile strength (12 ± 0.2 MPa) and elongation (300% ± 50%). The strength of the web was high enough to use as filter without the need of any supporting matrix and could be applicable in the field of self‐supporting membranes. The X‐ray and DSC analyses of the PA 6 electrospun fibers show the presence of the γ‐form of PA 6 crystallite that is usually obtained in the condition where a high stress of the fibers is applied. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

2.
Core-sheath nanofibrous yarns were obtained through electrospinning of polyamide 6 (PA6) solution containing different concentrations of multi-wall carbon nanotubes (MWNTs) as sheath and PVA multifilament as the yarn core. By dissolving PVA, for obtaining conductive hollow nanofibrous PA6/MWNTs yarn, two types of porosity could be obtained including hollow central tube due to the structure of hollow yarn and nano-porous areas embedded in electrospun nanofibers. SEM results showed that the diameters of nanofibers were varying in the range of 103–145 nm obeying MWNTs concentrations and TEM results revealed that the MWNTs were embedded in nanofiber matrix as straight and aligned form. DSC analysis showed that electrospinning process caused the formation of less-ordered γ phase in nanofibers. The electrical conductivity of yarns increased from 10?13 S m?1 to 2.4?×?10?6 S m?1 with increasing the concentration of nanotubes from 0 wt.% to 7 wt.%.  相似文献   

3.
Electrospinning of poly(lactic‐co‐glycolic acid) (PLGA) in chloroform or 1,1,1,3,3,3‐hexafluoro‐2‐propanol (HFIP) was investigated, focusing on its solution parameters, to develop nonwoven biodegradable nanofibrous structures for tissue engineering. PLGA nanofibers were obtained by electrospinning of 15 wt % PLGA solution and the resulting average fiber diameters were varied with the range of 270–760 nm, depending on solution property. When small amounts of benzyl triethylammonium chloride (BTEAC) was added to the PLGA/chloroform solution, the average diameter was decreased from 760 to 450 nm and the fibers were densely amounted in a straight shape. In addition, the average fiber diameter (270 nm) of nanofibers electrospun from polar HFIP solvent was much smaller than that (760 nm) of nanofibers electrospun from nonpolar chloroform solvent. Therefore, it could be concluded that conductivity or dielectric constant of the PLGA solution was a major parameter affecting the morphology and diameter of the electrospun PLGA fibers. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1214–1221, 2006  相似文献   

4.
Electrospun nanofibrous yarns of shape memory polyurethane (SMPU)-based nanofibers were successfully prepared. The electrospun yarns were analyzed to assess the dependence of mechanical and shape memory properties on the yarn twist angle. The yarn with a 60° twist angle has high compactness and density, leading to increased tensile strength, elastic modulus, and strain energy. In addition, this yarn shows a significant improvement in the shape memory recovery stress compared with the non-twisted SMPU nanofibers. Moreover, thermal stimuli allowed for the 60° twisted yarn to lift a load that is 103 times heavier than itself. This yarn had a shape recovery stress of 0.61 MPa and generated a 7.95 mJ recovery energy. The results suggest the electrospun yarns could be used as actuators and sensing devices in the medical and biological fields.  相似文献   

5.
In this study, nanofibrous mat with high oil sorption capability was prepared via one‐step electrospinning process without any further post‐treatments. For this purpose, the fabrication of styrene/acrylonitrile copolymer nanofibers was carried out using various dimethylformamide (DMF)/tetrahydrofuran and DMF/ethanol (DMF/EtOH) binary mixture ratios in an electrospining atmosphere with various relative humidity (RH) levels. Scanning electron microscope micrographs showed that DMF/tetrahydrofuran and DMF/EtOH ratio and RH value could considerably affect the diameter, surface, and interior morphology of the resultant nanofibers. The nanofiber morphology was dependent upon the polymer/solvent(s)/water ternary phase diagram behavior. In overall, the partial hydrophilicity of styrene/acrylonitrile copolymer resulted in electrospun nanofibers with wrinkled surface. In addition, the incorporation of nonsolvent in the spinning solution and using high RH atmosphere forced the polymeric solution jet to intensively phase separate and, therefore, produce the nanofibers with highly interior porous structure during drying process. The maximal capacity and rate of oil sorption (170 g/g) was observed for the nanofibrous mat prepared using EtOH/DMF (2/3: vol/vol) and RH value of 60% showing the highest internal porosity. The results showed that the oil sorption capability and mechanical strength of the fibrous mat are strongly dependent on nanofibers diameter and porous structure, which can be controlled through adjusting the RH and spinning solvent quality. The electrospun mat with highest Young's modulus (7.68 MPa) was prepared using EtOH/DMF (2/3) binary mixture and RH value of 45%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45586.  相似文献   

6.
In this study, carbon fiber–epoxy composites are interleaved with electrospun polyamide‐6,6 (PA 66) nanofibers to improve their Mode‐I fracture toughness. These nanofibers are directly deposited onto carbon fabrics before composite manufacturing via vacuum infusion. Three‐point bending, tensile, compression, interlaminar shear strength, Charpy impact, and double cantilever beam tests are performed on the reference and PA 66 interleaved specimens to evaluate the effects of PA 66 nanofibers on the mechanical properties of composites. To investigate the effect of nanofiber areal weight density (AWD), nanointerlayers with various AWD are prepared by changing the electrospinning duration. It is found that the electrospun PA 66 nanofibers are very effective in improving Mode‐I toughness and impact resistance, compressive strength, flexural modulus, and strength of the composites. However, these nanofibers cause a decrease in the tensile strength of the composites. The glass‐transition temperature of the composites is not affected by the addition of PA 66 nanofibers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45244.  相似文献   

7.
Low strength is one of the main disadvantages of nanofibrous structures in some applications such as suture yarns. To overcome this matter, in the present research, a novel method was applied to improve the tensile properties of nanofiber yarns. For this purpose, nanofibers and particles of polyvinyl acetate (PVAc) were added as a hot melt adhesive to nanofiber yarns in order to initiate adhesive bonding between nanofibers by two approaches. In the first one, Nylon 66/ PVAc hybrid nanofiber yarn was produced in opposite charged nozzles set up. In another approach, PVAc particles were electrosprayed through one of the nozzles while nylon 66 nanofibers were producing through another one. Afterward, thermal treatment was carried out for 78 seconds on samples in different temperatures. The results indicate that tensile strength was improved up to 1.97 and 1.7 times in comparison to nylon 66 nanofiberous yarn by adding PVAc nanofibers and particles, respectively. FTIR analysis was also carried out to assess the hybrid sample composition after heat treatment.  相似文献   

8.
The objective of this study is to compare the spinnability, morphology, structure, mechanical properties, and cell compatibility of the silk fibroin nanofiber nonwoven electrospun fabrics using aqueous (AQ) solution and formic acid (FA) solution. The lower limit concentration was 5?wt% and 3?wt% of AQ solution and FA solution for electrospinning, respectively. The fiber diameter of electrospun fabric using FA solution was larger than that using aqueous solution at the same concentration. The secondary structure contents of silk fabrics were same between AQ and FA solutions. FA was remained in silk nanofibers, and the remained FA could be neutralized. Young’s modulus and cell adhesion on electrospun fabric using FA was lower than that using AQ solution. On the contrary, lower cell proliferation rate on electrospun fabric using FA was kept even after neutralization.  相似文献   

9.
The dispersion behavior of single‐walled carbon nanotube (SWCNT) has important effects on morphological and mechanical properties of SWCNT composite nanofibers. The relationship of the dispersion conditions with morphological and mechanical characteristics for SWCNT / polyacrylonitrile (PAN) / polyvinylpyrrolidone (PVP) composite nanofibers have been examined. The SEM and TEM analyses of the nanofibers revealed that the deformation in the nanofiber structures increases with increasing concentration of SWCNTs. Tensile results showed that only 2 wt% SWCNT loading to the electrospun composite nanofibers gave rise to 10‐fold and 3‐fold increase in the tensile modulus and tenacity of nanofiber layers, respectively. Essentially, high mechanical properties and uniform morphology of the composite nanofibers were found at SWCNT concentration of ∼2 wt% due to their stable and individual dispersion. POLYM. COMPOS., 33:1951–1959, 2012. © 2012 Society of Plastics Engineers  相似文献   

10.
The photoluminescent germanium nanocrystals (Ge-NCs) were successfully incorporated into electrospun polymeric nanofiber matrix in order to develop photoluminescent nanofibrous composite web. In the first step, the synthesis of Ge-NCs was achieved by nanosecond pulsed laser ablation of bulk germanium wafer immersed in organic liquid. The size, the structural and the chemical characteristics of Ge-NCs investigated by TEM, XPS, XRD and Raman spectroscopy revealed that the Ge-NCs were highly pure and highly crystalline having spherical shape within 3–20 nm particle size distribution. In the second step, Ge-NCs were mixed with polyvinyl alcohol (PVA) polymer solution, and then, Ge-NC/PVA nanofibers were obtained via electrospinning technique. The electrospinning of Ge-NCs/PVA nanoweb composite structure was successful and bead-free Ge-NCs/PVA nanofibers having average fiber diameter of 185 ± 40 nm were obtained. The STEM analysis of the electrospun Ge-NCs/PVA nanofibers elucidated that the Ge-NCs were distributed homogeneously in the polymeric nanofiber matrix. The UV–Vis absorption and photoluminescence spectroscopy studies indicated the quantum confinement effect of Ge-NCs on the optical properties of the electrospun Ge-NCs/PVA nanoweb.  相似文献   

11.
This study investigates the microstructure and mechanical properties of electrospun nanofibers from polyacrylonitrile (PAN)‐dimethylformamide (DMF) solution at different relative humidity (RH) in the range from 14% to 60% and two different temperatures (20°C and 40°C). Nanofibers produced at low RH (22% or less at 20°C) exhibit relatively smooth surface and solid core, whereas at higher RH (30% or higher at 20°C) rough surface and porous core are observed. The resulting morphology is explained by means of H2O/DMF/PAN ternary phase diagram. At higher RH, the water diffusion into polymer‐solution jet brings thermodynamic instability into the system leading to separation of polymer‐rich phase and polymer‐lean phase, where the later contributes to porosity. Higher process temperature (40°C) yields larger miscibility area in the ternary phase diagram leading to formation of porous structure at relatively higher RH (40%). Tensile strength of nanofibrous yarns is found to vary from 80 MPa to 130 MPa depending on the processing temperature and RH. The amount of porosity is found to affect the tensile properties of nanofibers most significantly, although diameter and crystallinity play important role. Annealing is found to alleviate surface roughness and porosity and increase crystallinity. Tensile strength of nanofibrous yarns is found to improve by up to 25% after annealing. POLYM. ENG. SCI., 58:998–1009, 2018. © 2017 Society of Plastics Engineers  相似文献   

12.
The continuous nanofiber yarns of poly(L ‐lactide) (PLLA)/nano‐β‐tricalcium phosphate (n‐TCP) composite are prepared from oppositely charged electrospun nanofibers by conjugate electrospinning with coupled spinnerets. The morphology and mechanical properties of PLLA/n‐TCP nanofiber yarns are characterized by scanning electron microscope, transmission electron microscope, and electronic fiber strength tester. The results show that PLLA/n‐TCP nanofibers are aligned well along the longitudinal axis of the yarn, and the concentration of PLLA plays a significant role on the diameter of the nanofibers. The thicker yarn of PLLA/n‐TCP composite with the weight ratio of 10/1 has been produced by multiple conjugate electrospinning using three pairs of spinnerets, and the yarn has tensile strength of 0.31cN/dtex. A preliminary study of cell biocompatibility suggests that PLLA/n‐TCP nanofiber yarns may be useable scaffold materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

13.
The aim of this study was to investigate the preparation and characterization of PVA and PVA/4‐VBBA (4‐Vinylbenzene boronic acid) hybrid electrospun nanofiber mat. PVA was mixed with cross‐linkable 4‐Vinylbenzene boronic acid (4‐VBBA), enabling the polymer to cross‐link upon UV irradiation. The photo‐cross‐linking reaction was characterized by a Fourier transform infrared spectroscopy. The structure and morphology of electrospun membranes were investigated by scanning electron microscopy (SEM). SEM images showed that the nanofiber diameter and the nanostructured morphology depended on solution viscosity, applied electric voltage(AV), tip to collector distance (TCD), and the amount of the 4‐VBBA. The thermal properties of PVA and PVA/4‐VBBA hybrid nanofibers were investigated by thermo gravimetric analysis. The photo‐crosslinked nanofibers were insoluble in water. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

14.
In this study, electrospun biocompatible nanofibers with random orientation were prepared by physically blending poly(vinyl alcohol)‐stilbazol quaternized (PVA‐SbQ) with zein in acetic acid solution for wound healing. PVA‐SbQ was used as the foundation polymer as well as crosslinking agent, blended with zein to achieve desirable properties such as improved tensile strength, surface wettability, and in vitro degradable properties. Moreover, vaccarin drug was incorporated in situ into electrospun nanofibrous membranes for cell viability and cell attachment. The addition of vaccarin showed great effects on the morphology of nanofiber and enhanced cell viability and proliferation in comparison with composite nanofibers without drug. The presence of PVA‐SbQ, zein, and vaccarin drug in the nanofibrous membranes exhibited good compatibility, hydrophilicity, and biocompatibility and created a moist environment to have potential application for wound healing. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42565.  相似文献   

15.
Nanofiber yarns with twisted and continuous structures have potential applications in fabrication of complicated structures such as surgical suture yarns, artificial blood vessels, and tissue scaffolds. The objective of this article is to characterize the tensile fatigue behavior of continuous Polyamide 66 (PA66) nanofiber yarns produced by electrospinning with three different twist levels. Morphology and tensile properties of yarns were obtained under static tensile loading and after fatigue loading. Results showed that tensile properties and yarn diameter were dependent on the twist level. Yarns had nonlinear time‐independent stress–strain behavior under the monotonic loading rates between 10 and 50 mm/min. Applying cyclic loading also positively affected the tensile properties of nanofiber yarns and changed their stress–strain behavior. Fatigue loading increased the crystallinity and alignment of nanofibers within the yarn structure, which could be interpreted as improved tensile strength and elastic modulus. POLYM. ENG. SCI., 55:1805–1811, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Optimization of the mechanical properties is necessary in the applications of electrospun nanofibrous matrices. In this work, mechanical reinforcement of electrospun nanofiber membranes of water‐soluble polymer by the incorporation of commercial nanodiamonds (NDs) was studied. Through an ND/poly(vinyl alcohol) (ND/PVA) model system, it is demonstrated that 155% improvement of Young's modulus, 89% increase in tensile strength, and 336% elevation in energy to break are achieved by the addition of only 2 wt% ND. Fourier transform infrared spectroscopy results suggest the existence of molecular interactions between NDs and PVA matrix, which contributes to the effective load transfer from the polymer matrix to the fillers. However, higher level of ND addition (>2 wt%) aggravates the agglomeration of nanofillers in PVA matrix and offsets the reinforcing effect, as ND agglomerates may act as flaws in composite nanofibers. Furthermore, NDs have optimizing effect on the morphology of ND/PVA nanofibers through increasing the conductivity of the electrospinning solution. Therefore, ND nanofillers possess the potential to improve the mechanical performance of water‐soluble polymer‐based nanofiber membranes. POLYM. COMPOS., 34:1735–1744, 2013. © 2013 Society of Plastics Engineers  相似文献   

17.
The wicking phenomenon is of prime importance with regards to biomedical applications of nanofiber yarns such as suture yarns and tissue scaffolds. In such applications, the yarns are usually subjected to cyclic tensile forces and biological tensile stresses. There is a lack of science behind the effect of fatigue on wicking properties of nanofiber yarns and this work aims at exploring this venue. Wicking properties of polyamide 66 nanofiber yarns are investigated by tracing the color change in the yarn structure resulting from pH changes during the capillary rise of distilled water. Results show that applying cyclic loading increases equilibrium wicking height in the Lucus–Washburn equation, which is attributed to changes in the overall pore structure in the cyclic loaded yarn. The likely causes of these changes are studied by scanning electron microscope, which reveals disentangled, more or less aligned and parallel nanofibers with a smaller radius in the nanofibrous structure. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47206.  相似文献   

18.
A facile compounding process, which combined nanocomposite process with electrospinning for preparing novel polyamide6/organic modified montmorillonite (PA6/O‐MMT) composite nanofibers, is reported. In this compounding process, the O‐MMT slurry was blended into the formic acid solution of PA6 at moderate temperatures, where the nanosized O‐MMT particles were first dispersed in N,N‐dimethyl formamide solvent homogeneously via ultrasonic mixing. Subsequently the solution via electrospinning formed nanofibers, which were collected onto aluminum foil. The O‐MMT platelets were detected to be exfoliated at nanosize level and dispersed homogeneously along the axis of the nanofibers using an electron transmission microscope. Scanning electron microscope and atomic force microscope were used to analysis the size and surface morphology of polyamide6/O‐MMT composite nanofibers. The addition of O‐MMT reduced the surface tension and viscosity of the solution, leading to the decrease in the diameter of nanofiber and the formation of rough and ridge‐shape trails on the nanofiber surface. The behavior of the dynamic water adsorption of composite nanofibers was also investigated and discussed in this article. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

19.
Cellulose triacetate (CTA) nanofiber nonwoven mats were continuously electrospun by using mixed solvent of DMSO/chloroform system. The size and morphology of CTA nanofibers were investigated. It was found that CTA fibers with diameters in the range of 98 nm–1.81 μm were obtained from 8 wt % CTA solutions in 1 : 1, 3 : 2, 2 : 1, 3 : 1, 5 : 1 and 7 : 1 (v/v) DMSO/chloroform. The average diameter of CTA nanofiber was decreased and size distribution was narrowed with increasing the DMSO content in the mixed solvent. Smooth and uniform nanofibers with mean diameters of about 260 nm could be obtained from a solution of CTA in the binary system DMSO/chloroform 5 : 1(v/v) at a polymer concentration of 8 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40373.  相似文献   

20.
Sea‐island polyurethane (PU)/polycarbonate (PC) composite nanofibers were obtained through electrospinning of partially miscible PU and PC in 3 : 7 (v/v) N,N‐dimethylformamide (DMF) and tetrahydrofuran (THF) mixture solvent. Their structures, mechanical, and thermal properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric (TG), and differential scanning calorimetry (DSC). The structures and morphologies of the nanofibers were influenced by composition ratio in the binary mixtures. The pure PC nanofiber was brittle and easy to break. With increasing the PU content in the PU/PC composite nanofibers, PU component not only facilitated the electrospinning of PC but improved the mechanical properties of PU/PC nanofibrous mats. In a series of nanofibrous mats with varied PU/PC composition ratios, PU/PC 70/30 showed excellent tensile strength of 9.60 Mpa and Young's modulus of 55 Mpa. After selective removal of PC component in PU/PC composite nanofibers by washing with acetone, the residual PU maintained fiber morphology. However, the residual PU nanofiber became irregular and contained elongated indents and ridges along the fiber surface. PU/PC composite fibers showed sea‐island nanofiber structure due to phase separation in the spinning solution and in the course of electrospinning. At PC content below 30%, the PC domains were small and evenly dispersed in the composite nanofibers. As PC content was over 50%, the PC phases became large elongated aggregates dispersed in the composite nanofibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号