首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The role of nanoclays and TiO2 nanoparticle loadings were investigated on low density polyethylene crystalline structure, in addition to studying packaging film properties such as barrier, thermal and mechanical properties. The polymer crystal study indicated for the orthorhombic crystal phase and about 20% lower degree of crystallinity for nanocomposites containing more than 2 wt.% TiO2 nanoparticles. Based on the X-ray diffraction technique, the dispersion of nanoclays was improved to almost good degree of clay exfoliation with the company of 4 wt.% TiO2 nanoparticles. In agreement with XRD results, the TEM morphological studies mainly suggest that TiO2 has a helpful effect on nanoclay exfoliation. The increase in degradation temperature of nanocomposites may be attributed to the formation of inorganic char on polymer melt. The barrier properties of TiO2/clay nanocomposite packaging films depend mainly on nanoclay loading with an unclear trend from TiO2 nanoparticles. The increase in elastic modulus and the yield stress of nanocomposite films showed great effects on film mechanical properties by nanoclays.  相似文献   

2.
In this study, low‐density polyethylene (LDPE) nanocomposite films with two types of nanoparticles, TiO2 (3 wt %) and Closite 20A (3 and 5 wt %), were prepared using a melt blow extrusion as an industrial method and their properties such as mechanical properties, water vapor, oxygen and carbon dioxide gas barrier, and antimicrobial activity were tested. Transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were also performed to determine the degree of dispersion and exfoliation of nanoparticles. Mechanical test indicated that the reinforcement in the presence of the nanocomposites was more than that with their conventional counterparts, and the highest stiffness was achieved in a sample containing 5 wt % clay and 3 wt % TiO2. Exfoliation of silicate layers and a good dispersion of TiO2 nanoparticles in LDPE were achieved as confirmed by XRD and TEM. The gas barrier properties were improved after formation of the nanocomposites especially by insertion of 5 wt % of clay nanoparticles as a filler in the LDPE matrix. The photocatalytic effect of the nanocomposite film was carried out by antimicrobial evaluation against Pseudomonas spp. and Rhodotorula mucilaginosa and by ethylene removal test using 8 W ultraviolet (UV) lamps with a constant relative intensity of 1 mW cm?2. The greatest effects were recorded by combining UVA illumination and active film. It was also proven that the photocatalyst thin film with improved barrier properties prepared by extrusion could be used in horticultural product packaging applications. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41764.  相似文献   

3.
Electrically conductive HCl doped polyaniline (Pani) : titanium dioxide (TiO2) nanocomposites thin films were prepared by in‐situ oxidative polymerization of aniline in the presence of different amounts of TiO2 nanoparticles. Later film casting was done using N‐Methyl‐2‐pyrrolidone (NMP) as a solvent. The formation of Pani : TiO2 nanocomposites were characterized by Fourier Transform Infra‐Red spectroscopy (FTIR), x‐ray diffraction (XRD) and thermogravimetric analysis (TGA). The stability of the nanocomposites in terms of direct‐current electrical conductivity retention was studied in air by isothermal and cyclic techniques. The films of Pani : TiO2 nanocomposites were observed thermally more stable under ambient environmental conditions than pure polyaniline film. The stability was seen to be highly dependent on the content of TiO2 nanoparticles in the nanocomposite films. Due to their high stability, such type of nanocomposites can find place as a replacement material for pure polyaniline in electrical and electronic devices. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

4.
In this study, TiO2 nanoparticles were incorporated into low-density polyethylene by melt blending. Morphological properties and dispersion behavior of TiO2 nanocomposite were characterized through field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. Thermal stability of the nanocomposites was determined by thermogravimetric analysis. Moreover, the mechanical properties of nanocomposites were determined. Antimicrobial activity of TiO2 nanocomposites was investigated by in vitro test. Dispersion of the nanoparticles was good in nanocomposites. According to thermogravimetric analysis, incorporation of TiO2 nanoparticles into low-density polyethylene enhanced the thermal stability. Mechanical properties of nanocomposites were improved by TiO2 nanoparticles. Results showed that the antibacterial effect of low-density polyethylene –TiO2 nanocomposite was significantly enhanced by TiO2nanoparticles (p?2 nanoparticles not only can improve the properties of low-density polyethylene but they also have the potential to be used as an active food packaging film.  相似文献   

5.
Durable ultraviolet (UV)-protective cotton fabric has great application potential in outdoor cotton clothing. In this study, oppositely charged TiO2 nanoparticles were deposited onto cotton fabric through the layer-by-layer self-assembly technique, resulting in multilayer films with UV-protective properties. The mechanism of the technology has been investigated through characterization of the structure and properties using different techniques including FTIR, UV–Vis spectroscopy, and a scanning electron microscope with an energy-dispersive X-ray spectrum. The results showed that TiO2 nanoparticles distributed uniformly on the surface of cotton fibers. The TGA results indicated that the TiO2 nanoparticles deposit on cotton fabrics had little effect on the thermal stability of cotton fabrics. The tensile strength and air permeability of the cotton samples were tested by a universal material testing machine and automatic ventilation instrument. The UV protection property of cotton fabric after assembled multilayer films was measured by an ultraviolet transmittance analyzer, and the laundering experiments were carried out to determine the durability of TiO2 nanoparticles on cotton fabric. The results showed that the UV protection property of cotton fabrics after assembled TiO2 nanoparticles was still maintained at a high level after five launderings.  相似文献   

6.
In this work, nanocomposites (Ncs) from Pd nanoparticles and TiO2 (Pd-Nps-TiO2) were supported on a polystyrene matrix (PS). Chemical liquid deposition, solvated metal atom dispersion and in situ polymerization were used in order to synthesize these Ncs. Colloid and nanocomposite characterization were performed by TEM, SEM, EDX, SAED and TGA. TEM analysis revealed a particle size of 7 nm for Coll-Styrene and 11 nm for Pd-Nps supported on TiO2 after radical polymerization. SAED showed phases corresponding to both metallic Pd and TiO2 anatase in the polymeric matrix. Molecular weight (MW) was determined by viscosimetric method. MW varies according to the initiator concentration and nanoparticle amount used for polymerization. The amount of nanoparticles increased the decomposition temperature of the Ncs by 10 °C, improving the thermal stability of these hybrid materials. Photoacoustic properties were evaluated in order to determine the effect of nanoparticles on thermal diffusivity (α) inside the matrix. Significant values of (α) were found for Ncs with Pd-Nps in contrast to PS and Pd/TiO2 Ncs. Structural aspects and colloidal aggregation of Ncs were also studied.  相似文献   

7.
The effects of particle size of titanium dioxide (TiO2) on mechanical, thermal, and morphological properties of pure polyoxymethylene (POM) and POM/TiO2 nanocomposites were investigated and compared with the results for nanoparticle ZnO in the same matrix, reported in a previous paper. POM/TiO2 nanocomposites with varying concentration of TiO2 were prepared by the melt mixing technique in a twin screw extruder, the same method that used for blending the homogeneous ZnO nanocomposites. The dispersion of TiO2 particles in POM nanocomposites was studied by scanning electron microscopy (SEM). The agglomeration, as observed by the mechanical properties of TiO2 particles in the polymer matrix, increased with increasing TiO2 content, a result not found for ZnO even at lower particle sizes. Increasing the filler content of POM/TD32.4 and POM/TD130 (130 nm) nanocomposites resulted in a decrease in tensile strength. The Young modulus, stress at break and impact strength of TiO2 nanocomposite did not improve with increasing filler contents, in opposition to the better agglomeration conditions of ZnO nanocomposite even at lower particle sizes. Because of agglomeration, the POM/TD32.4 nanocomposites had lower mechanical properties and lower degradation temperature than the POM/TD130 ones. The sizes of nanoparticles determined the agglomeration, but however, the agglomeration also depended on the type of nanoparticles, even when using the same matrix (POM) and the same mixing method. TiO2 nanoparticles were more difficult to mix and were more agglomerated in the POM matrix as compared to ZnO nanoparticles, regardless of the size of the nanoparticles. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Novel nanocomposite films of TiO2 nanoparticles and hydrophobic polymers having polar groups, poly (bisphenol‐A and epichlorohydrin) or copolymer of styrene and maleic anhydride, with high refractive indices, high transparency, no color, solvent‐resistance, good thermal stability, and mechanical properties were prepared by incorporating surface‐modified TiO2 nanoparticles into polymer matrices. In the process of preparing colloidal solution of TiO2 nanoparticles, severe aggregation of particles can be reduced by surface modification using carboxylic acids and long‐chain alkyl amines. These TiO2 nanoparticles dispersed in solvents were found not to aggregate after mixing with polymer solutions. Transparent colorless free‐standing films were obtained by drying a mixture of TiO2 nanoparticles colloidal solution and polymer solutions in vacuum. Transmission electronic microscopic studies of the films suggest that the TiO2 nanoparticles of 3–6 nm in diameter were dispersed in polymer matrices while maintaining their original size. Thermogravimetric analysis results indicate that the nanocomposite film has good thermal stability and the weight fraction of observed TiO2 nanoparticles in the film is in good accordance with that of theoretical calculations. The refractive index of nanocomposite films of TiO2 and poly(bisphenol‐A and epichlorohydrin) was in the range of 1.58–1.81 at 589 nm, which linearly increased with the content of TiO2 nanoparticles from 0 to 80 wt %. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

9.
Nanocomposites based on poly (n-butyl methacrylate) (PBMA) with various concentrations of titanium dioxide (TiO2) nanoparticles were synthesised by in situ free radical polymerisation method. The formation of nanocomposite was characterised by FTIR, UV, XRD, DSC, TGA, impedance analyser and flame retardancy measurements. FTIR and UV spectrum ascertained the intermolecular interaction between nanoparticles and the polymer chain. The XRD studies indicated that the amorphous region of PBMA decreased with the increase in content of metal oxide nanoparticles. The SEM revealed the uniform dispersion of nanoparticles in the polymer composite. The DSC and TGA studies showed that the glass transition temperature and thermal stability of the nanocomposites were increased with the increase in the concentration of nanoparticles. The conductivity and dielectric properties of nanocomposites were higher than pure PBMA and the maximum electrical property was observed for the sample with 7 wt% TiO2. As the concentration of nanoparticles increased above 7 wt%, the electrical property of nanocomposite was decreased owing to the agglomeration of nanoparticles in the polymer. Nanoparticles could impart better flame retardancy to PBMA/TiO2 composite and the flame resistance of the materials improved with the addition of nanoparticles in the polymer matrix.  相似文献   

10.
Polyaniline (PANi)–titanium dioxide (TiO2) nanocomposite materials were prepared by chemical polymerization of aniline doped with TiO2 nanoparticles. Surface pressure–area (π‐A) isotherms of these nanocomposites show phase transformations in the monolayer during compression process. Multiple isotherms indicate that the monolayer of the nanocomposite material can retain its configuration during compression‐expansion cycles. Langmuir–Blodgett thin films of PANi–TiO2 nanocomposite were deposited on the quartz and indium tin oxide coated conducting glass substrates. Fourier transfer infrared spectroscopy and UV–visible spectroscopy study indicates the presence of TiO2 in PANi, whereas X‐ray Diffraction study confirmed the anatase phase of TiO2 and particle size (~nm) of PANi–TiO2. The morphology of Langmuir–Blodgett films of these nanocomposites was also characterized by atomic force microscopy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41386.  相似文献   

11.
TiO2 nanoparticles were introduced into high‐impact polystyrene (HIPS) in the form of a master batch in which TiO2 was predispersed in composites of HIPS and ethylene–vinyl acetate copolymer (EVA) by melt compounding. The resulting materials were analyzed with a Rosand Precision rheometer, transmission electron microscopy, atomic force microscopy, and ultraviolet–visible light spectrophotometry. The results showed that the introduction of TiO2 nanoparticles into HIPS influenced the apparent viscosity of the composites to a rather small extent. The addition of EVA could regulate the rheological behavior of the HIPS/TiO2 master batch greatly. EVA helped the dispersions of the agglomerates of TiO2 nanoparticles in the flow; this was featured by the distinct yielding in the flow after the introduction of EVA, as well as the large change in the non‐Newtonian indices. The dispersions of the HIPS/TiO2 master batch in the HIPS matrix were improved greatly by the addition of EVA. TiO2 nanoparticles were dispersed randomly in HIPS/EVA/TiO2 nanocomposites. The dispersion improvement of the HIPS/EVA/TiO2 master batch was also proved by atomic force microscopy and ultraviolet–visible spectroscopy investigations. The mechanical properties of HIPS/EVA/TiO2 nanocomposites with low TiO2 contents were slightly higher than those of pure HIPS. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4434–4438, 2006  相似文献   

12.
Uniform TiO2/SiO2 composite films were prepared on ITO substrates by electrodeposition, and highly photoelectrocatalytic (PEC) activity of the composite films was observed toward the degradation of methyl orange (MO) in aqueous solutions. It was further found that their PEC activity was dependent on the electrodeposition parameters including deposition time, solution pH and SiO2 content. Under the optimized condition, the PEC degradation of MO on TiO2/SiO2 composite film electrode could be enhanced about 14 times relative to that on neat TiO2 film electrode. The high PEC activity of the TiO2/SiO2 composite film electrode was mainly attributed to the enhancement of the charge separation of photo-generated electron-hole pairs by the dispersion of SiO2 nanoparticles in the TiO2 matrix with the aid of the applied electric field.  相似文献   

13.
A poly(azulene)-TiO2 composite film (PAz-TiO2) was synthesized electrochemically by oxidation of azulene in an electrolyte medium containing TiO2 nanoparticles. Polymerization was performed under magnetic stirring in an acetonitrile solution containing tetrabutylammonium hexafluorophosphate as the electrolyte salt. Influence of the concentration of TiO2 in the reaction suspension on the electrochemical and optical properties and on the structure of the composite films was studied by cyclic voltammetry, ex situ Raman and FTIR reflection spectroscopy and in situ UV–vis and FTIR spectroelectrochemical techniques. Morphology of the composite films was studied by Scanning Electron Microscopy and the amount and distribution of the TiO2 nanoparticles within the polymeric matrix by Inductively Coupled Plasma Mass Spectrometry with laser ablation. Addition of TiO2 in the reaction suspension had a small catalytic activity for the polymerization of Az. Inclusion of TiO2 nanoparticles in PAz did not affect the voltammetric behavior or the chemical structure of the formed polymer films. However, a different chain conformation and morphology of the film was formed when synthesized in presence of TiO2 compared to the plain PAz film. It was also found that the film morphology was more homogeneous when the concentration of TiO2 was ≥10 mM in the polymerization solution than films polymerized without any TiO2.  相似文献   

14.
Two series of polyaniline–TiO2 nanocomposite materials were prepared in base form by in situ polymerization of aniline with inorganic fillers using TiO2 nanoparticles (P25) and TiO2 colloids (Hombikat), respectively. The effect of particle sizes and contents of TiO2 materials on their dielectric properties was evaluated. The as-synthesized polyaniline–TiO2 nanocomposite materials were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), thermal analysis (DTA/TGA), and X-ray diffraction (XRD). Dielectric properties of polyaniline–TiO2 nanocomposites in the form of films were measured at 1 KHz–1 MHz and a temperature range of 35–150 °C. Higher dielectric constants and dielectric losses of polyaniline–TiO2 nanocomposites than those of neat PANI were found. PANI–TiO2 nanocomposites derived from P25 exhibited higher dielectric constants and losses than those from Hombikat TiO2 colloids. Electrical conductivity measurements indicate that the conductivity of nanocomposites is increased with TiO2 content. The dielectric properties and conductivities are considered to be enhanced due to the addition of TiO2, which might induce the formation of a more efficient network for charge transport in the base polyaniline matrix.  相似文献   

15.
This paper highlights the effect of different concentrations of titanium dioxide (TiO2) nanoparticles on the electrical and optical properties of silk fibroin (SF). TiO2 based SF nanocomposite films were prepared using the solvent casting method. Uniform dispersion and agglomeration of nanoparticles, in nanocomposite films, were observed by field emission SEM. The conductivity of pure SF and nanocomposite films was determined by a four-point probe and the TiO2 nanoparticles were found to bring high conductivity to the nanocomposite films. Dielectric strength improved with the addition of nanoparticles to the SF matrix. Dielectric constant and capacitance of the pure SF and nanocomposite films were measured using an LCR meter, which showed a 10-fold enhancement on the addition of nanoparticles in SF. A very unusual property, i.e. negative resistance, was observed during LCR meter analysis for the nanocomposite films for a particular range of frequency (200–550 kHz), voltage (1 V) and current (0.5–1.5 μA). TiO2 nanoparticles changed the semiconducting behavior of the SF films from p-type to n-type as measured by the Hall effect experiment. The optical properties of pure SF and nanocomposite films were measured using a UV–visible spectrophotometer. The increased concentration of nanoparticles in the SF has effectively enhanced the absorbing coefficient, refractive index and percentage transmittance and reduced the bandgap energy. These SF/TiO2 nanocomposite films have shown the potential to be used as dielectric and high refractive index material for optoelectronics applications. © 2021 Society of Industrial Chemistry.  相似文献   

16.
It has been shown that incorporation of TiO2 nanoparticles into hydrophobic coatings can show self-cleaning performance. Accelerated laboratory testing indicated that the coats retain their hydrophobic nature for an extended time period. In this paper, hydrophobic polydimethylsiloxane (PDMS)/TiO2 nanocomposite coatings with a TiO2 content of 0–40% were fabricated by simple blending of a PDMS dispersion with an aqueous TiO2 nanoparticle dispersion. Their long-term hydrophobicity and self-cleaning performance were investigated both in laboratory and real-world outdoor testing. As expected, TiO2 nanoparticle-based coatings exhibited better self-cleaning relative to the TiO2-free PDMS control coating as measured by methylene blue degradation testing. Excellent long-term hydrophobicity was observed in accelerated weathering testing when they contained the appropriate levels of TiO2 nanoparticles (i.e., 0–30%). However, the same PDMS/TiO2 coatings did not show self-cleaning performance, and instead, exhibited improved dirt pickup resistance, in outdoor exposure testing. Sustained hydrophobicity was observed in outdoor exposure testing for the clear films except when TiO2 levels were at 40%. The hysteresis of water contact angle (HWCA) significantly increased for the PDMS control coating, and water beading was lost as the film surface picked up dirt. In contrast, the TiO2-based coatings with appropriate TiO2 levels maintained a relatively low HWCA after outdoor exposure and no water sheeting on rainy days was observed. This result demonstrates that while photocatalytic TiO2 nanoparticles can maintain coating hydrophobicity upon outdoor exposure, long-term self-cleaning performance in polluted environments has not yet been achieved with this type of coating under real-world conditions.  相似文献   

17.
In this study, polymeric hindered amine light stabilizers (HALS)-functionalized silica coated rutile titanium dioxide (TiO2-SiO2) nanoparticles were prepared by encapsulating commercially available TiO2-SiO2 nanoparticles with methyl methacrylate (MMA) and 1,2,2,6,6-pentamethyl-4-piperidyl methacrylate (PMPM) copolymers via miniemulsion polymerization. The obtained functional (TiO2-SiO2/P(MMA-co-PMPM)) fillers have been added to polyurethane acrylate (PUA) oligomers to get UV-curable nanocomposite coatings. The functionalization of the TiO2-SiO2 nanoparticles with polymeric HALS has been confirmed by infrared spectra (IR), thermogravimetric (TG), and X-ray photoelectron spectroscopy (XPS) analyses. The scanning electron microscope (SEM) micrographs indicated that homogeneous dispersion of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles resulted in improved transparency and mechanical properties of the UV-curable PUA coatings. Rhodamine B (Rh.B) photodegradation measurement confirmed the excellent UV-shielding performance of PUA nanocomposite coatings containing TiO2-SiO2/P(MMA-co-PMPM). The addition of TiO2-SiO2/P(MMA-co-PMPM) composite nanoparticles reduced the UV-curable PUA coatings degradation rate dramatically. The UV-aging resistance of PUA coatings was improved significantly. Over all, the combination of TiO2-SiO2 nanoparticles and polymeric HALS offers an attractive way to fabricate the multi-functional fillers, which can be used to improve the mechanical properties and UV-aging resistance of PUA coatings simultaneously.  相似文献   

18.
TiO2 thin films were fabricated through hydrothermal method. Silver nanoparticles were loaded on TiO2 thin films via photoreduction technique. Subsequently, the graphene quantum dots (GQDs) were spin‐coated on the Ag/TiO2 nanocomposites thin films. The crystal structure, surface morphology and UV‐vis absorbance were tested by XRD, SEM and ultraviolet‐visible spectrophotometer. These results indicated that Ag nanoparticles and GQDs are anchored on the TiO2 nanorods. Absorbance of Ag/TiO2 and GQDs/Ag/TiO2 nanocomposite thin films have been extended into the visible region. Visible‐light response of the samples were investigated by electrochemical workstation. The photoresponse of the sample can be enhanced by sensitization of the Ag nanoparticles and GQDs. The enhanced visible‐light response may be due to the surface plasmon resonance of silver nanoparticles and visible absorbance of GQDs. The highest photocatalytic activity has been observed in the 9‐GQDs/Ag/TiO2 composite thin film. The efficient charge separation and transportation can be achieved by introducing the Ag nanoparticles and GQDs in the TiO2 thin film.  相似文献   

19.
In this work, 3% and 5% TiO2/Ag nanoparticles were dispersed in low‐density polyethylene through melt blending process, and subsequently nanocomposite films were prepared by hot pressing. Paraffin was used for the first time in this work as compatibilizer agent. The effect of TiO2/Ag nanoparticle content, as well as compatibilizer dosage on the antimicrobial, morphological, mechanical, and optical performance of the nanocomposite films was investigated. Improved mechanical properties of the nanocomposite films were found on using paraffin as compatibilizer in comparison with the neat low‐density polyethylene (LDPE) films. The optical study results also showed that the addition of TiO2/Ag to the LDPE films does not drastically change the film appearance other than making them more reddish. The fabricated nanocomposites presented in this study could be a suitable choice for food packaging (subject to further investigation of the food packaging behavior). The results showed that both TiO2/Ag nanoparticle and compatibilizer are needed to prevent the bacteria growth in the film. The best result was obtained by using 5% nanoparticle and 4% paraffin compatibilizer where the bacteria growth rate was significantly reduced by 95%. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45913.  相似文献   

20.
Encapsulation of inorganic nanoparticles by polymers is one of the interesting research topics that lead to the synthesis of nanocomposites. These nanocomposite materials comprise the properties of both organic polymer and inorganic nanoparticles. Here, hybrid latex particles with core–shell nanostructure were prepared via semi-batch emulsion polymerization. Copolymers of (methyl methacrylate-butyl acrylate) and (dimethylaminoethyl methacrylate-butyl acrylate-acrylic acid) were formed as the inner and outer layers, respectively on the surface of modified TiO2 nanoparticles as the core. In order to create compatibility between inorganic and polymeric phases, modification of TiO2 nanoparticles was performed with glycidyl methacrylate with an optimized procedure for the first time and then emulsion polymerization was carried out. The products of each step were fully characterized. The results of dynamic light scattering, TEM and SEM analyses proved the formation of encapsulated hybrid latex particles. DLS and SEM data revealed that the sizes of nanocomposite particles vary between 85 and 120 nm for 0–5 wt% of the modified TiO2 nanoparticles. Physico-mechanical properties of the obtained nanocomposite films were studied by DMTA. It was found that using only 3 wt% of modified TiO2 improved those properties of resulting films remarkably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号